These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34576815)

  • 1. Biodegradation Potential and Putative Catabolic Genes of Culturable Bacteria from an Alpine Deciduous Forest Site.
    Poyntner C; Kutzner A; Margesin R
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culturable bacteria from an Alpine coniferous forest site: biodegradation potential of organic polymers and pollutants.
    Berger T; Poyntner C; Margesin R
    Folia Microbiol (Praha); 2021 Feb; 66(1):87-98. PubMed ID: 32975726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments.
    Tian M; Du D; Zhou W; Zeng X; Cheng G
    Braz J Microbiol; 2017; 48(2):305-313. PubMed ID: 28065387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities.
    Sandhu A; Halverson LJ; Beattie GA
    Microb Ecol; 2009 Feb; 57(2):276-85. PubMed ID: 19034559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds.
    Heinaru E; Truu J; Stottmeister U; Heinaru A
    FEMS Microbiol Ecol; 2000 Mar; 31(3):195-205. PubMed ID: 10719200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes.
    Merimaa M; Heinaru E; Liivak M; Vedler E; Heinaru A
    Arch Microbiol; 2006 Oct; 186(4):287-96. PubMed ID: 16906406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes.
    Tuan NN; Hsieh HC; Lin YW; Huang SL
    Bioresour Technol; 2011 Mar; 102(5):4232-40. PubMed ID: 21227686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition.
    Mishra S; Singh SN; Pande V
    Bioresour Technol; 2014 Jul; 164():299-308. PubMed ID: 24862007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia].
    Vacca GS; Kiesel B; Wünsche L; Pucci OH
    Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of the functional gene catechol 1,2-dioxygenase as a biomarker in the detection of BTEX-degrading Rhodococcus species.
    Táncsics A; Szoboszlay S; Kriszt B; Kukolya J; Baka E; Márialigeti K; Révész S
    J Appl Microbiol; 2008 Oct; 105(4):1026-33. PubMed ID: 18479346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial degradation of mixed-PAHs and expression of PAH-catabolic genes.
    Sakshi ; Singh SK; Haritash AK
    World J Microbiol Biotechnol; 2022 Dec; 39(2):47. PubMed ID: 36534359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation.
    Neumann G; Teras R; Monson L; Kivisaar M; Schauer F; Heipieper HJ
    Appl Environ Microbiol; 2004 Apr; 70(4):1907-12. PubMed ID: 15066779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration.
    Hupert-Kocurek K; Guzik U; Wojcieszyńska D
    Acta Biochim Pol; 2012; 59(3):345-51. PubMed ID: 22826823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium,
    Lee GLY; Zakaria NN; Convey P; Futamata H; Zulkharnain A; Suzuki K; Abdul Khalil K; Shaharuddin NA; Alias SA; González-Rocha G; Ahmad SA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33316871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of dimethylphenols by bacteria with different ring-cleavage pathways of phenolic compounds.
    Viggor S; Heinaru E; Loponen J; Merimaa M; Tenno T; Heinaru A
    Environ Sci Pollut Res Int; 2002; Spec No 1():19-26. PubMed ID: 12638744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic analysis of
    Morya R; Kumar M; Singh SS; Thakur IS
    Biotechnol Biofuels; 2019; 12():277. PubMed ID: 31788027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limnobacter spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes.
    Vedler E; Heinaru E; Jutkina J; Viggor S; Koressaar T; Remm M; Heinaru A
    Syst Appl Microbiol; 2013 Dec; 36(8):525-32. PubMed ID: 24012239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts.
    Margesin R; Fonteyne PA; Redl B
    Res Microbiol; 2005; 156(1):68-75. PubMed ID: 15636749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts.
    Margesin R; Gander S; Zacke G; Gounot AM; Schinner F
    Extremophiles; 2003 Dec; 7(6):451-8. PubMed ID: 12942349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR.
    Mesarch MB; Nakatsu CH; Nies L
    Appl Environ Microbiol; 2000 Feb; 66(2):678-83. PubMed ID: 10653735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.