These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34576846)

  • 1. Valorization Potential of a Novel Bacterial Strain,
    Dar MA; Dhole NP; Xie R; Pawar KD; Ullah K; Rahi P; Pandit RS; Sun J
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host-Specific Diversity of Culturable Bacteria in the Gut Systems of Fungus-Growing Termites and Their Potential Functions towards Lignocellulose Bioconversion.
    Xie R; Dong C; Wang S; Danso B; Dar MA; Pandit RS; Pawar KD; Geng A; Zhu D; Li X; Xu Q; Sun J
    Insects; 2023 Apr; 14(4):. PubMed ID: 37103218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis.
    Tsegaye B; Balomajumder C; Roy P
    Int Microbiol; 2019 Mar; 22(1):29-39. PubMed ID: 30810928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylanases of Bacillus spp. isolated from ruminant dung as potential accessory enzymes for agro-waste saccharification.
    Thite VS; Nerurkar AS
    Lett Appl Microbiol; 2015 May; 60(5):456-66. PubMed ID: 25645626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites.
    Liu G; Zhang K; Gong H; Yang K; Wang X; Zhou G; Cui W; Chen Y; Yang Y
    Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):130. PubMed ID: 37598218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
    Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC
    Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors.
    Auer L; Lazuka A; Sillam-Dussès D; Miambi E; O'Donohue M; Hernandez-Raquet G
    Front Microbiol; 2017; 8():2623. PubMed ID: 29312279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle
    Luo C; Li Y; Chen Y; Fu C; Long W; Xiao X; Liao H; Yang Y
    Biotechnol Biofuels; 2019; 12():70. PubMed ID: 30976320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genomic perspective on the potential of termite-associated
    Vu NT; Quach TN; Dao XT; Le HT; Le CP; Nguyen LT; Le LT; Ngo CC; Hoang H; Chu HH; Phi QT
    PeerJ; 2021; 9():e11839. PubMed ID: 34395081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics.
    Lazuka A; Auer L; O'Donohue M; Hernandez-Raquet G
    Biotechnol Biofuels; 2018; 11():284. PubMed ID: 30356893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae.
    Shirley D; Oppert C; Reynolds TB; Miracle B; Oppert B; Klingeman WE; Jurat-Fuentes JL
    Insect Sci; 2014 Oct; 21(5):609-18. PubMed ID: 24318365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum.
    Wang Z; Xin X; Shi X; Zhang Y
    Sci Total Environ; 2020 Jul; 726():138564. PubMed ID: 32315854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tribolium castaneum defensins are primarily active against Gram-positive bacteria.
    Tonk M; Knorr E; Cabezas-Cruz A; Valdés JJ; Kollewe C; Vilcinskas A
    J Invertebr Pathol; 2015 Nov; 132():208-215. PubMed ID: 26522790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues.
    Suwannarangsee S; Arnthong J; Eurwilaichitr L; Champreda V
    J Microbiol Biotechnol; 2014 Oct; 24(10):1427-37. PubMed ID: 25001556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes.
    López-Mondéjar R; Algora C; Baldrian P
    Biotechnol Adv; 2019 Nov; 37(6):107374. PubMed ID: 30910513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome sequencing of gut symbiotic
    Li Y; Lei L; Zheng L; Xiao X; Tang H; Luo C
    Biotechnol Biofuels; 2020; 13():34. PubMed ID: 32140179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome sequence analysis and characterization of Bacillus altitudinis B12, a polylactic acid- and keratin-degrading bacterium.
    Bordel S; Martín-González D; Muñoz R; Santos-Beneit F
    Mol Genet Genomics; 2023 Mar; 298(2):389-398. PubMed ID: 36585993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.
    Sheng T; Zhao L; Gao LF; Liu WZ; Cui MH; Guo ZC; Ma XD; Ho SH; Wang AJ
    Biotechnol Biofuels; 2016; 9():172. PubMed ID: 27525041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cellulolytic system of the termite gut.
    König H; Li L; Fröhlich J
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):7943-62. PubMed ID: 23900801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of bacterial diversity and screening of cellulose-degrading bacteria in the gut system of
    Su RR; Pan BQ; Luo YX; Zheng XL; Lu W; Wang XY
    Front Bioeng Biotechnol; 2024; 12():1340168. PubMed ID: 38456003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.