These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 34576956)

  • 21. Avenue to Large-Scale Production of Graphene Quantum Dots from High-Purity Graphene Sheets Using Laboratory-Grade Graphite Electrodes.
    Kapoor S; Jha A; Ahmad H; Islam SS
    ACS Omega; 2020 Aug; 5(30):18831-18841. PubMed ID: 32775885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development.
    Gupta S; Smith T; Banaszak A; Boeckl J
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28961225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells.
    Rajender G; Goswami U; Giri PK
    J Colloid Interface Sci; 2019 Apr; 541():387-398. PubMed ID: 30710821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications.
    Lai H; Xu F; Zhang Y; Wang L
    J Mater Chem B; 2018 Jun; 6(24):4008-4028. PubMed ID: 32255147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots.
    Ahirwar S; Mallick S; Bahadur D
    ACS Omega; 2017 Nov; 2(11):8343-8353. PubMed ID: 31457373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene Quantum Dots for Optical Bioimaging.
    Lu H; Li W; Dong H; Wei M
    Small; 2019 Sep; 15(36):e1902136. PubMed ID: 31304647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review on Surface-Enhanced Raman Scattering.
    Pilot R; Signorini R; Durante C; Orian L; Bhamidipati M; Fabris L
    Biosensors (Basel); 2019 Apr; 9(2):. PubMed ID: 30999661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the Microstructures of Graphene Quantum Dots (GQDs) by Surface-Enhanced Raman Spectroscopy.
    Wu J; Wang P; Wang F; Fang Y
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30360411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging.
    Hong GL; Zhao HL; Deng HH; Yang HJ; Peng HP; Liu YH; Chen W
    Int J Nanomedicine; 2018; 13():4807-4815. PubMed ID: 30197516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots.
    Li H; Xu Q; Wang X; Liu W
    Small; 2018 Jul; 14(28):e1801523. PubMed ID: 29882238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.
    Liu D; Chen X; Hu Y; Sun T; Song Z; Zheng Y; Cao Y; Cai Z; Cao M; Peng L; Huang Y; Du L; Yang W; Chen G; Wei D; Wee ATS; Wei D
    Nat Commun; 2018 Jan; 9(1):193. PubMed ID: 29335471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One step electro-oxidative preparation of graphene quantum dots from wood charcoal as a peroxidase mimetic.
    Nirala NR; Khandelwal G; Kumar B; Vinita ; Prakash R; Kumar V
    Talanta; 2017 Oct; 173():36-43. PubMed ID: 28602189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents.
    Wagle DV; Deakyne CA; Baker GA
    J Phys Chem B; 2016 Jul; 120(27):6739-46. PubMed ID: 27268431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes.
    Jalani G; Cerruti M
    Nanoscale; 2015 Jun; 7(22):9990-7. PubMed ID: 25981393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman spectroscopy as a versatile tool for studying the properties of graphene.
    Ferrari AC; Basko DM
    Nat Nanotechnol; 2013 Apr; 8(4):235-46. PubMed ID: 23552117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying defects in graphene via Raman spectroscopy at different excitation energies.
    Cançado LG; Jorio A; Ferreira EH; Stavale F; Achete CA; Capaz RB; Moutinho MV; Lombardo A; Kulmala TS; Ferrari AC
    Nano Lett; 2011 Aug; 11(8):3190-6. PubMed ID: 21696186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets.
    Yu X; Cai H; Zhang W; Li X; Pan N; Luo Y; Wang X; Hou JG
    ACS Nano; 2011 Feb; 5(2):952-8. PubMed ID: 21210657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical Analysis of Surface Reconstruction Domains on InAs Wetting Layer Preceding Quantum Dot Formation.
    Konishi T; Tsukamoto S
    Nanoscale Res Lett; 2010 Aug; 5(12):1901-4. PubMed ID: 21170412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First-layer effect in graphene-enhanced Raman scattering.
    Ling X; Zhang J
    Small; 2010 Sep; 6(18):2020-5. PubMed ID: 20730826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can graphene be used as a substrate for Raman enhancement?
    Ling X; Xie L; Fang Y; Xu H; Zhang H; Kong J; Dresselhaus MS; Zhang J; Liu Z
    Nano Lett; 2010 Feb; 10(2):553-61. PubMed ID: 20039694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.