These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34576997)

  • 1. Unravelling the Interactions of Magnetic Ionic Liquids by Energy Decomposition Schemes: Towards a Transferable Polarizable Force Field.
    González-Veloso I; Figueiredo NM; Cordeiro MNDS
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Nature of Cation-Anion Interactions in Magnetic Ionic Liquids as Revealed Using High-Pressure Fourier Transform Infrared (FT-IR) Spectroscopy.
    Burba CM; Chang HC
    Appl Spectrosc; 2019 May; 73(5):511-519. PubMed ID: 30252498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4].
    Choi E; McDaniel JG; Schmidt JR; Yethiraj A
    J Phys Chem Lett; 2014 Aug; 5(15):2670-4. PubMed ID: 26277961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework.
    Schneider WB; Bistoni G; Sparta M; Saitow M; Riplinger C; Auer AA; Neese F
    J Chem Theory Comput; 2016 Oct; 12(10):4778-4792. PubMed ID: 27564403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids.
    Izgorodina EI; Golze D; Maganti R; Armel V; Taige M; Schubert TJ; MacFarlane DR
    Phys Chem Chem Phys; 2014 Apr; 16(16):7209-21. PubMed ID: 24113510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer.
    Pitonák M; Riley KE; Neogrády P; Hobza P
    Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions.
    Tsuzuki S; Shinoda W; Saito H; Mikami M; Tokuda H; Watanabe M
    J Phys Chem B; 2009 Aug; 113(31):10641-9. PubMed ID: 19591511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transferable, Polarizable Force Field for Ionic Liquids.
    Goloviznina K; Canongia Lopes JN; Costa Gomes M; Pádua AAH
    J Chem Theory Comput; 2019 Nov; 15(11):5858-5871. PubMed ID: 31525922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational investigation of non-covalent interactions in 1-butyl 3-methylimidazolium/bis(trifluoromethylsulfonyl)imide [bmim][Tf
    Blanco-Díaz EG; Vázquez-Montelongo EA; Cisneros GA; Castrejón-González EO
    J Chem Phys; 2018 Feb; 148(5):054303. PubMed ID: 29421909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved treatment of empirical dispersion and a many-body energy decomposition scheme for the explicit polarization plus symmetry-adapted perturbation theory (XSAPT) method.
    Lao KU; Herbert JM
    J Chem Phys; 2013 Jul; 139(3):034107. PubMed ID: 23883010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the Effective Fragment Potential Method with Symmetry-Adapted Perturbation Theory in the Calculation of Intermolecular Energies for Ionic Liquids.
    Tan SY; Izgorodina EI
    J Chem Theory Comput; 2016 Jun; 12(6):2553-68. PubMed ID: 27116302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the DFT-SAPT and Canonical EDA Schemes for the Energy Decomposition of Various Types of Noncovalent Interactions.
    Stasyuk OA; Sedlak R; Guerra CF; Hobza P
    J Chem Theory Comput; 2018 Jul; 14(7):3440-3450. PubMed ID: 29926727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational assessment of the crystallization tendency of 1-ethyl-3-methylimidazolium ionic liquids.
    Červinka C; Štejfa V
    Phys Chem Chem Phys; 2021 Mar; 23(8):4951-4962. PubMed ID: 33621293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrapolation and Scaling of the DFT-SAPT Interaction Energies toward the Basis Set Limit.
    Řezáč J; Hobza P
    J Chem Theory Comput; 2011 Mar; 7(3):685-9. PubMed ID: 26596299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study.
    Altun A; Neese F; Bistoni G
    Beilstein J Org Chem; 2018; 14():919-929. PubMed ID: 29765473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical Absorption Of CO2 in Protic and Aprotic Ionic Liquids: An Interaction Perspective.
    Izgorodina EI; Hodgson JL; Weis DC; Pas SJ; MacFarlane DR
    J Phys Chem B; 2015 Sep; 119(35):11748-59. PubMed ID: 26267781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and conformation properties of 1-alkyl-3-methylimidazolium halide ionic liquids: a density-functional theory study.
    Wang Y; Li H; Han S
    J Chem Phys; 2005 Nov; 123(17):174501. PubMed ID: 16375540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation-π interactions: accurate intermolecular potential from symmetry-adapted perturbation theory.
    Ansorg K; Tafipolsky M; Engels B
    J Phys Chem B; 2013 Sep; 117(35):10093-102. PubMed ID: 23924321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.