BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34577111)

  • 1. The Analysis of Pore Development and Formation of Surface Functional Groups in Bamboo-Based Activated Carbon during CO
    Phothong K; Tangsathitkulchai C; Lawtae P
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of carbonization parameters of Moso-bamboo-based porous charcoal on capturing carbon dioxide.
    Huang PH; Jhan JW; Cheng YM; Cheng HH
    ScientificWorldJournal; 2014; 2014():937867. PubMed ID: 25225639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and characterization of bamboo-based activated carbon through single-step H
    Ismail IS; Rashidi NA; Yusup S
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12434-12440. PubMed ID: 34189693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Approach for Controlling Mesoporosity in Activated Carbon by the Consecutive Process of Air Oxidation, Thermal Destruction of Surface Functional Groups, and Carbon Activation (the OTA Method).
    Lawtae P; Tangsathitkulchai C
    Molecules; 2021 May; 26(9):. PubMed ID: 34067110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.
    Wei H; Deng S; Hu B; Chen Z; Wang B; Huang J; Yu G
    ChemSusChem; 2012 Dec; 5(12):2354-60. PubMed ID: 23132775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature.
    Herawan SG; Hadi MS; Ayob MR; Putra A
    ScientificWorldJournal; 2013; 2013():624865. PubMed ID: 23737721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of activated carbon prepared from chlorella-based algal residue.
    Chang YM; Tsai WT; Li MH
    Bioresour Technol; 2015 May; 184():344-348. PubMed ID: 25451779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of activated carbons modification on porosity, surface structure and phenol adsorption.
    Stavropoulos GG; Samaras P; Sakellaropoulos GP
    J Hazard Mater; 2008 Mar; 151(2-3):414-21. PubMed ID: 17644248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and evaluation of nitrogen-tailored hierarchical meso-/micro-porous activated carbon for CO
    Zhang S; Zhou Q; Jiang X; Yao L; Jiang W; Xie R
    Environ Technol; 2020 Nov; 41(27):3544-3553. PubMed ID: 31072233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Effect of Nitrogen Doping and Ultra-Microporosity on the Performance of Biomass and Microalgae-Derived Activated Carbons for CO
    Balou S; Babak SE; Priye A
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42711-42722. PubMed ID: 32845602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption.
    Valix M; Cheung WH; McKay G
    Chemosphere; 2004 Aug; 56(5):493-501. PubMed ID: 15212915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced CO
    Manmuanpom N; Thubsuang U; Dubas ST; Wongkasemjit S; Chaisuwan T
    J Environ Manage; 2018 Oct; 223():779-786. PubMed ID: 29986325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical porous polystyrene-based activated carbon spheres for CO
    Ren X; Zhang C; Kou L; Wang R; Wang Y; Li R
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13098-13113. PubMed ID: 34569006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of CO
    Siemak J; Michalkiewicz B
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):40133-40141. PubMed ID: 37442926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation.
    Vernersson T; Bonelli PR; Cerrella EG; Cukierman AL
    Bioresour Technol; 2002 Jun; 83(2):95-104. PubMed ID: 12056497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Dry Chemical Synthesis of Nitrogen-Doped Activated Carbon from Bamboo Charcoal for Carbon Dioxide Adsorption.
    Ying W; Tian S; Liu H; Zhou Z; Kapeso G; Zhong J; Zhang W
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and facile synthesis of highly porous low cost carbon from potassium-rich wine stone and their application for high-performance removal.
    Arslanoğlu H
    J Hazard Mater; 2019 Jul; 374():238-247. PubMed ID: 31005706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of porosity and surface chemistry of textile waste jute-based activated carbon by physical activation.
    Chen W; He F; Zhang S; Xv H; Xv Z
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9840-9848. PubMed ID: 29372525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen Self-Doped Activated Carbons Derived from Bamboo Shoots as Adsorbent for Methylene Blue Adsorption.
    Mi B; Wang J; Xiang H; Liang F; Yang J; Feng Z; Zhang T; Hu W; Liu X; Liu Z; Fei B
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31434214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of activated carbon foam from phenolic resin.
    Zhao X; Lai S; Liu H; Gao L
    J Environ Sci (China); 2009; 21 Suppl 1():S121-3. PubMed ID: 25084407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.