These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34577119)

  • 1. The Art of Framework Construction: Core-Shell Structured Micro-Energetic Materials.
    Duan B; Li J; Mo H; Lu X; Xu M; Wang B; Liu N
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-Shell Structured Nanoenergetic Materials: Preparation and Fundamental Properties.
    Ma X; Li Y; Hussain I; Shen R; Yang G; Zhang K
    Adv Mater; 2020 Jul; 32(30):e2001291. PubMed ID: 32557860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core@Double-Shell Structured Energetic Composites with Reduced Sensitivity and Enhanced Mechanical Properties.
    Lin C; Huang B; Gong F; Yang Z; Liu J; Zhang J; Zeng C; Li Y; Li J; Guo S
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30341-30351. PubMed ID: 31356045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of CL-20/HMX Cocrystal@Melamine-Formaldehyde Resin Core-Shell Composites Featuring Enhanced Thermal and Safety Performance via In Situ Polymerization.
    Duan B; Lu X; Mo H; Tan B; Wang B; Liu N
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization.
    He W; Liu PJ; He GQ; Gozin M; Yan QL
    Adv Mater; 2018 Oct; 30(41):e1706293. PubMed ID: 29862580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of quasi-core/shell structured composite energetic materials to improve combustion performance.
    Wang R; Yang L; Zhang Z; Song W; Wang D; Guo C
    RSC Adv; 2023 Jun; 13(26):17834-17841. PubMed ID: 37323446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of functionalized core-shell structure on the thermodynamic and shape memory properties of nanocomposites.
    Liu J; Min B; Wang Z; Teng J; Sun X; Li S; Li S
    Nanoscale; 2020 Feb; 12(5):3205-3219. PubMed ID: 31967167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Core-Shell-Structured RDX@PVDF Microspheres with Improved Thermal Stability and Decreased Mechanical Sensitivity.
    Wu H; Jiang A; Li M; Wang Y; Zhao F; Li Y
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing Single- or Dual-Layer Biomass Composite Energetic Material through Self-Assembly of Biomass Polyphenol Structural Materials.
    Li Y; Jiang Z; Liu Z; Li B
    Langmuir; 2024 Jun; 40(24):12313-12321. PubMed ID: 38838006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Core-Shell Micro/Nanoparticles and Their Tribological Application: A Review.
    Chen H; Zhang L; Li M; Xie G
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33076415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Bi
    Xia M; Yao Q; Yang H; Guo T; Du X; Zhang Y; Li G; Luo Y
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31212659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Litchi-like Core-Shell HMX@HPW@PDA Microparticles for Polymer-Bonded Energetic Composites with Low Sensitivity and High Mechanical Properties.
    Lin C; Zeng C; Wen Y; Gong F; He G; Li Y; Yang Z; Ding L; Li J; Guo S
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4002-4013. PubMed ID: 31874021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity.
    Huang B; Hao X; Zhang H; Yang Z; Ma Z; Li H; Nie F; Huang H
    Ultrason Sonochem; 2014 Jul; 21(4):1349-57. PubMed ID: 24613468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al-Based Nano-Sized Composite Energetic Materials (Nano-CEMs): Preparation, Characterization, and Performance.
    Pang W; Fan X; Wang K; Chao Y; Xu H; Qin Z; Zhao F
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32485843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic-Inspired One-Step Strategy for Improvement of Interfacial Interactions in Cellulose Nanofibers by Modification of the Surface of Nitramine Explosives.
    Chen L; Cao X; Chen Y; Li Q; Wang Y; Wang X; Qin Y; Cao X; Liu J; Shao Z; He W
    Langmuir; 2021 Jul; 37(28):8486-8497. PubMed ID: 34236199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review.
    Pang W; Deng C; Li H; DeLuca LT; Ouyang D; Xu H; Fan X
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials.
    Masoumifard N; Guillet-Nicolas R; Kleitz F
    Adv Mater; 2018 Apr; 30(16):e1704439. PubMed ID: 29479756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles.
    Yue Q; Sun J; Kang Y; Deng Y
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):15804-15817. PubMed ID: 31593603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-Shell Structured Phenolic Polymer@TiO
    Xu X; Zhang L; Zhang S; Wang Y; Liu B; Ren Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32150857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of Yolk/Core-Shell Structured Nanoreactors for Thermal Hydrogenations.
    Ye RP; Wang X; Price CH; Liu X; Yang Q; Jaroniec M; Liu J
    Small; 2021 Mar; 17(9):e1906250. PubMed ID: 32406190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.