These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 34577174)
1. In Silico Analysis of Fungal and Chloride-Dependent α-Amylases within the Family GH13 with Identification of Possible Secondary Surface-Binding Sites. Janíčková Z; Janeček Š Molecules; 2021 Sep; 26(18):. PubMed ID: 34577174 [TBL] [Abstract][Full Text] [Related]
2. Fungal α-amylases from three GH13 subfamilies: their sequence-structural features and evolutionary relationships. Janíčková Z; Janeček Š Int J Biol Macromol; 2020 Sep; 159():763-772. PubMed ID: 32416292 [TBL] [Abstract][Full Text] [Related]
3. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Majzlová K; Pukajová Z; Janeček S Carbohydr Res; 2013 Feb; 367():48-57. PubMed ID: 23313816 [TBL] [Abstract][Full Text] [Related]
4. A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica. Janeček Š; Zámocká B Extremophiles; 2020 Mar; 24(2):207-217. PubMed ID: 31734852 [TBL] [Abstract][Full Text] [Related]
5. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. Cihan AC; Yildiz ED; Sahin E; Mutlu O World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894 [TBL] [Abstract][Full Text] [Related]
6. Domain evolution in enzymes of the neopullulanase subfamily. Kuchtová A; Janeček Š Microbiology (Reading); 2016 Dec; 162(12):2099-2115. PubMed ID: 27902421 [TBL] [Abstract][Full Text] [Related]
7. Two newly established and mutually related subfamilies GH13_48 and GH13_49 of the α-amylase family GH13. Mareček F; Terrapon N; Janeček Š Appl Microbiol Biotechnol; 2024 Jul; 108(1):415. PubMed ID: 38990377 [TBL] [Abstract][Full Text] [Related]
8. Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 alpha-amylase family. Gabrisko M; Janecek S FEBS J; 2009 Dec; 276(24):7265-78. PubMed ID: 19878315 [TBL] [Abstract][Full Text] [Related]
9. A Novel Subfamily GH13_46 of the α-Amylase Family GH13 Represented by the Cyclomaltodextrinase from Mareček F; Janeček Š Molecules; 2022 Dec; 27(24):. PubMed ID: 36557873 [TBL] [Abstract][Full Text] [Related]
10. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Janeček Š; Svensson B; MacGregor EA Cell Mol Life Sci; 2014 Apr; 71(7):1149-70. PubMed ID: 23807207 [TBL] [Abstract][Full Text] [Related]
11. The starch-binding domain family CBM41-An in silico analysis of evolutionary relationships. Janeček Š; Majzlová K; Svensson B; MacGregor EA Proteins; 2017 Aug; 85(8):1480-1492. PubMed ID: 28425599 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal alpha-amylase enzymes. van der Kaaij RM; Janeček Š; van der Maarel MJEC; Dijkhuizen L Microbiology (Reading); 2007 Dec; 153(Pt 12):4003-4015. PubMed ID: 18048915 [TBL] [Abstract][Full Text] [Related]
13. Modulation of inhibitory activity of xylanase-α-amylase inhibitor protein (XAIP): binding studies and crystal structure determination of XAIP-II from Scadoxus multiflorus at 1.2 Å resolution. Kumar S; Singh N; Mishra B; Dube D; Sinha M; Singh SB; Dey S; Kaur P; Sharma S; Singh TP BMC Struct Biol; 2010 Nov; 10():41. PubMed ID: 21092126 [TBL] [Abstract][Full Text] [Related]
14. Close evolutionary relatedness of alpha-amylases from Archaea and plants. Janecek S; Lévêque E; Belarbi A; Haye B J Mol Evol; 1999 Apr; 48(4):421-6. PubMed ID: 10079280 [TBL] [Abstract][Full Text] [Related]
15. Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57. Blesák K; Janeček Š Microbiology (Reading); 2013 Dec; 159(Pt 12):2584-2593. PubMed ID: 24109595 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. Božić N; Rozeboom HJ; Lončar N; Slavić MŠ; Janssen DB; Vujčić Z Int J Biol Macromol; 2020 Dec; 165(Pt A):1529-1539. PubMed ID: 33058974 [TBL] [Abstract][Full Text] [Related]
17. Structural similarities and evolutionary relationships in chloride-dependent alpha-amylases. D'Amico S; Gerday C; Feller G Gene; 2000 Jul; 253(1):95-105. PubMed ID: 10925206 [TBL] [Abstract][Full Text] [Related]
18. Gene sequence, bioinformatics and enzymatic characterization of alpha-amylase from Saccharomycopsis fibuligera KZ. Hostinová E; Janecek S; Gasperík J Protein J; 2010 Jul; 29(5):355-64. PubMed ID: 20552260 [TBL] [Abstract][Full Text] [Related]
19. New groups of protein homologues in the α-amylase family GH57 closely related to α-glucan branching enzymes and 4-α-glucanotransferases. Janeček Š; Martinovičová M Genetica; 2020 Apr; 148(2):77-86. PubMed ID: 32096055 [TBL] [Abstract][Full Text] [Related]
20. Horizontal Transfer and Gene Loss Shaped the Evolution of Alpha-Amylases in Bilaterians. Desiderato A; Barbeitos M; Gilbert C; Da Lage JL G3 (Bethesda); 2020 Feb; 10(2):709-719. PubMed ID: 31810981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]