These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 34577192)
21. A Simple Halogen-Free Magnesium Electrolyte for Reversible Magnesium Deposition through Cosolvent Assistance. Fan S; Asselin GM; Pan B; Wang H; Ren Y; Vaughey JT; Sa N ACS Appl Mater Interfaces; 2020 Mar; 12(9):10252-10260. PubMed ID: 31999930 [TBL] [Abstract][Full Text] [Related]
23. Tuning Sodium Interfacial Chemistry with Mixed-Anion Ionic Liquid Electrolytes. Forsyth M; Hilder M; Zhang Y; Chen F; Carre L; Rakov DA; Armand M; Macfarlane DR; Pozo-Gonzalo C; Howlett PC ACS Appl Mater Interfaces; 2019 Nov; 11(46):43093-43106. PubMed ID: 31701752 [TBL] [Abstract][Full Text] [Related]
24. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. Kalhoff J; Bresser D; Bolloli M; Alloin F; Sanchez JY; Passerini S ChemSusChem; 2014 Oct; 7(10):2939-46. PubMed ID: 25138922 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical performance and interfacial properties of Li-metal in lithium bis(fluorosulfonyl)imide based electrolytes. Younesi R; Bardé F Sci Rep; 2017 Nov; 7(1):15925. PubMed ID: 29162891 [TBL] [Abstract][Full Text] [Related]
26. Influence of Residual Water Traces on the Electrochemical Performance of Hydrophobic Ionic Liquids for Magnesium-Containing Electrolytes. Elkhafif OW; Hassan HK; Ceblin MU; Farkas A; Jacob T ChemSusChem; 2023 Oct; 16(19):e202300421. PubMed ID: 37338003 [TBL] [Abstract][Full Text] [Related]
27. Unlocking the Power of Magnesium Batteries: Synergistic Effect of InSb-C Composites to Achieve Superior Electrochemical Performance. Peng X; Yuan Y; Gu D; Zheng X; Li D; Wu L; Huang G; Wang J; Pan F Small; 2024 Sep; 20(38):e2400967. PubMed ID: 38751056 [TBL] [Abstract][Full Text] [Related]
28. Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode Buchner F; Uhl B; Forster-Tonigold K; Bansmann J; Groß A; Behm RJ J Chem Phys; 2018 May; 148(19):193821. PubMed ID: 30307189 [TBL] [Abstract][Full Text] [Related]
29. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
30. High-entropy Electrolyte Enables High Reversibility and Long Lifespan for Magnesium Metal Anodes. Wang S; Wang K; Zhang Y; Jie Y; Li X; Pan Y; Gao X; Nian Q; Cao R; Li Q; Jiao S; Xu D Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202304411. PubMed ID: 37269185 [TBL] [Abstract][Full Text] [Related]
31. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes. Kaushik S; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586 [TBL] [Abstract][Full Text] [Related]
32. Unraveling the Impact of Ether and Carbonate Electrolytes on the Solid-Electrolyte Interface and the Electrochemical Performances of ZnSe@C Core-Shell Composites as Anodes of Lithium-Ion Batteries. Ma D; Zhu Q; Li X; Gao H; Wang X; Kang X; Tian Y ACS Appl Mater Interfaces; 2019 Feb; 11(8):8009-8017. PubMed ID: 30702859 [TBL] [Abstract][Full Text] [Related]
33. Electrochemical Impedance Spectroscopy and X-ray Photoelectron Spectroscopy Study of Lithium Metal Surface Aging in Imidazolium-Based Ionic Liquid Electrolytes Performed at Open-Circuit Voltage. Morales-Ugarte JE; Benayad A; Santini CC; Bouchet R ACS Appl Mater Interfaces; 2019 Jun; 11(24):21955-21964. PubMed ID: 31124650 [TBL] [Abstract][Full Text] [Related]
34. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries. Mun J; Yim T; Park JH; Ryu JH; Lee SY; Kim YG; Oh SM Sci Rep; 2014 Aug; 4():5802. PubMed ID: 25168309 [TBL] [Abstract][Full Text] [Related]
36. High-Energy Density Li-O Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667 [TBL] [Abstract][Full Text] [Related]
37. Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability. Vatamanu J; Borodin O J Phys Chem Lett; 2017 Sep; 8(18):4362-4367. PubMed ID: 28846430 [TBL] [Abstract][Full Text] [Related]
38. In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes. Eshetu GG; Diemant T; Grugeon S; Behm RJ; Laruelle S; Armand M; Passerini S ACS Appl Mater Interfaces; 2016 Jun; 8(25):16087-100. PubMed ID: 27299469 [TBL] [Abstract][Full Text] [Related]
39. Enhanced Electrochemical Stability of Molten Li Salt Hydrate Electrolytes by the Addition of Divalent Cations. Kondou S; Nozaki E; Terada S; Thomas ML; Ueno K; Umebayashi Y; Dokko K; Watanabe M J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(35):20167-20175. PubMed ID: 30220955 [TBL] [Abstract][Full Text] [Related]
40. Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. Ha SY; Lee YW; Woo SW; Koo B; Kim JS; Cho J; Lee KT; Choi NS ACS Appl Mater Interfaces; 2014 Mar; 6(6):4063-73. PubMed ID: 24559269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]