These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34577227)

  • 1. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning.
    Schrumpf F; Frenzel P; Aust C; Osterhoff G; Fuchs M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach.
    Leitner J; Chiang PH; Dey S
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):218-228. PubMed ID: 34077378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Methods Programs Biomed; 2023 Oct; 240():107716. PubMed ID: 37542944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network.
    Slapničar G; Mlakar N; Luštrek M
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 38099538
    [No Abstract]   [Full Text] [Related]  

  • 11. Feature Learning for Blood Pressure Estimation from Photoplethysmography.
    Aguet C; Zaen JV; Jorge J; Proenca M; Bonnier G; Frossard P; Lemay M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():463-466. PubMed ID: 34891333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep Learning Approach to Predict Blood Pressure from PPG Signals.
    Tazarv A; Levorato M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5658-5662. PubMed ID: 34892406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contactless Blood Pressure Measurement Via Remote Photoplethysmography With Synthetic Data Generation Using Generative Adversarial Networks.
    Wu BF; Chiu LW; Wu YC; Lai CC; Cheng HM; Chu PH
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):621-632. PubMed ID: 37037253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only.
    Hsu YC; Li YH; Chang CC; Harfiya LN
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-learning-based blood pressure estimation using multi channel photoplethysmogram and finger pressure with attention mechanism.
    Kyung J; Yang JY; Choi JH; Chang JH; Bae S; Choi J; Kim Y
    Sci Rep; 2023 Jun; 13(1):9311. PubMed ID: 37291140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure.
    Finnegan E; Davidson S; Harford M; Watkinson P; Tarassenko L; Villarroel M
    Sci Rep; 2023 Jan; 13(1):986. PubMed ID: 36653426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuffless and Continuous Blood Pressure Estimation From PPG Signals Using Recurrent Neural Networks.
    El Hajj C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4269-4272. PubMed ID: 33018939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals.
    Malayeri AB; Khodabakhshi MB
    Sci Rep; 2022 Apr; 12(1):6633. PubMed ID: 35459260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.