BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34577293)

  • 1. Deep Recursive Bayesian Tracking for Fully Automatic Centerline Extraction of Coronary Arteries in CT Images.
    Jeon B
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
    Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Centerline Extraction in Fully Automated Coronary Ostium Localization and Centerline Extraction Framework using Deep Learning.
    Mostafa A; Ghanem AM; El-Shatoury M; Basha T
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3846-3849. PubMed ID: 34892073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography.
    Yang G; Kitslaar P; Frenay M; Broersen A; Boogers MJ; Bax JJ; Reiber JH; Dijkstra J
    Int J Cardiovasc Imaging; 2012 Apr; 28(4):921-33. PubMed ID: 21637981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast seed detection using local geometrical feature for automatic tracking of coronary arteries in CTA.
    Han D; Doan NT; Shim H; Jeon B; Lee H; Hong Y; Chang HJ
    Comput Methods Programs Biomed; 2014 Nov; 117(2):179-88. PubMed ID: 25106730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COACT: Coronary artery centerline tracker.
    Li X; Ji L; Zhang R; You H; Xu L; Greenwald SE; Sun Y; Zhang L; Yang B
    Med Phys; 2024 May; 51(5):3541-3554. PubMed ID: 38060686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Coronary Artery Segmentation Using Active Search for Branches and Seemingly Disconnected Vessel Segments from Coronary CT Angiography.
    Han D; Shim H; Jeon B; Jang Y; Hong Y; Jung S; Ha S; Chang HJ
    PLoS One; 2016; 11(8):e0156837. PubMed ID: 27536939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous extraction of coronary artery centerline from cardiac CTA images using a regression-based method.
    Wu X; Geng Y; Wang X; Zhang J; Xia L
    Math Biosci Eng; 2023 Jan; 20(3):4988-5003. PubMed ID: 36896532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic coronary roadmapping via catheter tip tracking in X-ray fluoroscopy with deep learning based Bayesian filtering.
    Ma H; Smal I; Daemen J; Walsum TV
    Med Image Anal; 2020 Apr; 61():101634. PubMed ID: 31978856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches.
    Zheng Y; Tek H; Funka-Lea G
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):74-81. PubMed ID: 24505746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional fast-marching and multi-model strategy to extract coronary artery centerlines.
    Jia D; Zhuang X
    Comput Biol Med; 2019 May; 108():67-77. PubMed ID: 31003181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach.
    Metz CT; Schaap M; Weustink AC; Mollet NR; van Walsum T; Niessen WJ
    Med Phys; 2009 Dec; 36(12):5568-79. PubMed ID: 20095269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-guided directional minimal path for fully automatic extraction of coronary centerlines from cardiac CTA.
    Liu L; Shi W; Rueckert D; Hu M; Ourselin S; Zhuang X
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):542-9. PubMed ID: 24505709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse appearance learning based automatic coronary sinus segmentation in CTA.
    Lu S; Huang X; Wang Z; Zheng Y
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):779-87. PubMed ID: 25333190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computerized analysis of coronary artery disease: performance evaluation of segmentation and tracking of coronary arteries in CT angiograms.
    Zhou C; Chan HP; Chughtai A; Kuriakose J; Agarwal P; Kazerooni EA; Hadjiiski LM; Patel S; Wei J
    Med Phys; 2014 Aug; 41(8):081912. PubMed ID: 25086543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vessel segmentation and catheter detection in X-ray angiograms using superpixels.
    Fazlali HR; Karimi N; Soroushmehr SMR; Shirani S; Nallamothu BK; Ward KR; Samavi S; Najarian K
    Med Biol Eng Comput; 2018 Sep; 56(9):1515-1530. PubMed ID: 29399728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple hypothesis template tracking of small 3D vessel structures.
    Friman O; Hindennach M; Kühnel C; Peitgen HO
    Med Image Anal; 2010 Apr; 14(2):160-71. PubMed ID: 20060770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms.
    Meng Y; Du Z; Zhao C; Dong M; Pienta D; Tang J; Zhou W
    Technol Health Care; 2023; 31(6):2303-2317. PubMed ID: 37545276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Reinforcement Learning with Explicit Spatio-Sequential Encoding Network for Coronary Ostia Identification in CT Images.
    Jang Y; Jeon B
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images.
    Gu L; Cai XC
    Artif Intell Med; 2021 Nov; 121():102189. PubMed ID: 34763804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.