These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34577408)

  • 1. A Spatiotemporal Deep Learning Approach for Automatic Pathological Gait Classification.
    Albuquerque P; Verlekar TT; Correia PL; Soares LD
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation and validation of temporal gait features using a markerless 2D video system.
    Verlekar TT; De Vroey H; Claeys K; Hallez H; Soares LD; Correia PL
    Comput Methods Programs Biomed; 2019 Jul; 175():45-51. PubMed ID: 31104714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of a novel deep learning-based marker-less motion capture system for gait study.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Assi A; Gajny L
    Gait Posture; 2022 May; 94():138-143. PubMed ID: 35306382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-speed transformer network for neurodegenerative disease assessment and activity recognition.
    Cheriet M; Dentamaro V; Hamdan M; Impedovo D; Pirlo G
    Comput Methods Programs Biomed; 2023 Mar; 230():107344. PubMed ID: 36706617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System for automatic gait analysis based on a single RGB-D camera.
    Rocha AP; Choupina HMP; Vilas-Boas MDC; Fernandes JM; Cunha JPS
    PLoS One; 2018; 13(8):e0201728. PubMed ID: 30075023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Vertical Ground Reaction Forces Pattern Visualization in Neurodegenerative Diseases Identification Using Deep Learning and Recurrence Plot Image Feature Extraction.
    Lin CW; Wen TC; Setiawan F
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning for Fall Risk Assessment With Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters.
    Tunca C; Salur G; Ersoy C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1994-2005. PubMed ID: 31831454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WildGait: Learning Gait Representations from Raw Surveillance Streams.
    Cosma A; Radoi IE
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring.
    Prochazka A; Dostal O; Cejnar P; Mohamed HI; Pavelek Z; Valis M; Vysata O
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():360-367. PubMed ID: 33434133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Classification of Gait Using Time-Frequency Representations and Deep Convolutional Neural Networks.
    Jung D; Nguyen MD; Park M; Kim J; Mun KR
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):997-1005. PubMed ID: 32142445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathological-Gait Recognition Using Spatiotemporal Graph Convolutional Networks and Attention Model.
    Kim J; Seo H; Naseem MT; Lee CS
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of Fine-Grained Walking Patterns Using a Smartwatch with Deep Attentive Neural Networks.
    Kim H; Kim HJ; Park J; Ryu JK; Kim SC
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Learning Approach for Foot Trajectory Estimation in Gait Analysis Using Inertial Sensors.
    Guimarães V; Sousa I; Correia MV
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network.
    Tortora S; Ghidoni S; Chisari C; Micera S; Artoni F
    J Neural Eng; 2020 Jul; 17(4):046011. PubMed ID: 32480381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile Stride Length Estimation With Deep Convolutional Neural Networks.
    Hannink J; Kautz T; Pasluosta CF; Barth J; Schulein S; GaBmann KG; Klucken J; Eskofier BM
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):354-362. PubMed ID: 28333648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification.
    Kwon J; Lee Y; Lee J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vision-Based Gait Events Detection Using Deep Convolutional Neural Networks.
    Jamsrandorj A; Nguyen MD; Park M; Kumar KS; Mun KR; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1936-1941. PubMed ID: 34891666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.
    Dehzangi O; Taherisadr M; ChangalVala R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system.
    Kanko RM; Laende EK; Strutzenberger G; Brown M; Selbie WS; DePaul V; Scott SH; Deluzio KJ
    J Biomech; 2021 Jun; 122():110414. PubMed ID: 33915475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.