These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34577472)

  • 1. Industrial Masonry Chimney Geometry Analysis: A Total Station Based Evaluation of the Unmanned Aerial System Photogrammetry Approach.
    Zrinjski M; Tupek A; Barković Đ; Polović A
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy Analysis of a New Data Processing Method for Landslide Monitoring Based on Unmanned Aerial System Photogrammetry.
    Jakopec I; Marendić A; Grgac I
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.
    Rosnell T; Honkavaara E
    Sensors (Basel); 2012; 12(1):453-80. PubMed ID: 22368479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system.
    Krause DJ; Hinke JT; Perryman WL; Goebel ME; LeRoi DJ
    PLoS One; 2017; 12(11):e0187465. PubMed ID: 29186134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles.
    Specht M; Wiśniewska M; Stateczny A; Specht C; Szostak B; Lewicka O; Stateczny M; Widźgowski S; Halicki A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models.
    Aboutalebi M; Torres-Rua AF; McKee M; Kustas WP; Nieto H; Alsina MM; White A; Prueger JH; McKee L; Alfieri J; Hipps L; Coopmans C; Dokoozlian N
    Remote Sens (Basel); 2020; 12(1):50. PubMed ID: 32355570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.
    Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J
    Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground Control Point-Free Unmanned Aerial Vehicle-Based Photogrammetry for Volume Estimation of Stockpiles Carried on Barges.
    He H; Chen T; Zeng H; Huang S
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Camera Imaging System for UAV Photogrammetry.
    Wierzbicki D
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30050007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping Forest Structure Using UAS inside Flight Capabilities.
    Kuželka K; Surový P
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Automatic UAS-Based Snow-Field Monitoring for Microclimate Research.
    Gabrlik P; Janata P; Zalud L; Harcarik J
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications.
    Lingua A; Marenchino D; Nex F
    Sensors (Basel); 2009; 9(5):3745-66. PubMed ID: 22412336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumetric Change Detection in Bedrock Coastal Cliffs Using Terrestrial Laser Scanning and UAS-Based SfM.
    Hayakawa YS; Obanawa H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UAV Block Geometry Design and Camera Calibration: A Simulation Study.
    Roncella R; Forlani G
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of digital surface models (DSMs) retrieved from unmanned aerial vehicle (UAV) point clouds using geometrical information from shadows.
    Aboutalebi M; Torres-Rua AF; McKee M; Kustas W; Nieto H; Coopmans C
    Proc SPIE Int Soc Opt Eng; 2019; 11008():. PubMed ID: 31359902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development.
    Shafian S; Rajan N; Schnell R; Bagavathiannan M; Valasek J; Shi Y; Olsenholler J
    PLoS One; 2018; 13(5):e0196605. PubMed ID: 29715311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.
    Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J
    Plant Methods; 2016; 12():35. PubMed ID: 27347001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling Multi-Mission Interoperable UAS Using Data-Centric Communications.
    Vidal I; Bellavista P; Sanchez-Aguero V; Garcia-Reinoso J; Valera F; Nogales B; Azcorra A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery.
    Padró JC; Carabassa V; Balagué J; Brotons L; Alcañiz JM; Pons X
    Sci Total Environ; 2019 Mar; 657():1602-1614. PubMed ID: 30677925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.