These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 34577473)
1. Hyperglycemia Identification Using ECG in Deep Learning Era. Cordeiro R; Karimian N; Park Y Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577473 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. Galloway CD; Valys AV; Shreibati JB; Treiman DL; Petterson FL; Gundotra VP; Albert DE; Attia ZI; Carter RE; Asirvatham SJ; Ackerman MJ; Noseworthy PA; Dillon JJ; Friedman PA JAMA Cardiol; 2019 May; 4(5):428-436. PubMed ID: 30942845 [TBL] [Abstract][Full Text] [Related]
3. Classification of electrocardiogram signals using deep learning based on genetic algorithm feature extraction. Khezripour H; Mozaffari SP; Reshadi M; Zarrabi H Biomed Phys Eng Express; 2023 Jul; 9(5):. PubMed ID: 37285819 [TBL] [Abstract][Full Text] [Related]
4. A Residual-Dense-Based Convolutional Neural Network Architecture for Recognition of Cardiac Health Based on ECG Signals. Ahmed AES; Abbas Q; Daadaa Y; Qureshi I; Perumal G; Ibrahim MEA Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631741 [TBL] [Abstract][Full Text] [Related]
5. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Hong S; Zhou Y; Shang J; Xiao C; Sun J Comput Biol Med; 2020 Jul; 122():103801. PubMed ID: 32658725 [TBL] [Abstract][Full Text] [Related]
6. Neural network approach for non-invasive detection of hyperglycemia using electrocardiographic signals. Nguyen LL; Su S; Nguyen HT Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4475-8. PubMed ID: 25570985 [TBL] [Abstract][Full Text] [Related]
7. Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. Li Z; Zhou D; Wan L; Li J; Mou W J Electrocardiol; 2020; 58():105-112. PubMed ID: 31812617 [TBL] [Abstract][Full Text] [Related]
8. A novel application of deep learning for single-lead ECG classification. Mathews SM; Kambhamettu C; Barner KE Comput Biol Med; 2018 Aug; 99():53-62. PubMed ID: 29886261 [TBL] [Abstract][Full Text] [Related]
9. Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss. Romdhane TF; Alhichri H; Ouni R; Atri M Comput Biol Med; 2020 Aug; 123():103866. PubMed ID: 32658786 [TBL] [Abstract][Full Text] [Related]
10. Automated ECG classification based on 1D deep learning network. Chen CY; Lin YT; Lee SJ; Tsai WC; Huang TC; Liu YH; Cheng MC; Dai CY Methods; 2022 Jun; 202():127-135. PubMed ID: 33930574 [TBL] [Abstract][Full Text] [Related]
11. Phase-domain Deep Patient-ECG Image Learning for Zero-effort Smart Health Security. Zhang Q Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2622-2628. PubMed ID: 31946434 [TBL] [Abstract][Full Text] [Related]
12. Automated Detection of Myocardial Infarction and Heart Conduction Disorders Based on Feature Selection and a Deep Learning Model. Hammad M; Chelloug SA; Alkanhel R; Prakash AJ; Muthanna A; Elgendy IA; Pławiak P Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080960 [TBL] [Abstract][Full Text] [Related]
13. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks. Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387 [TBL] [Abstract][Full Text] [Related]
14. An interpretable shapelets-based method for myocardial infarction detection using dynamic learning and deep learning. Qu J; Sun Q; Wu W; Zhang F; Liang C; Chen Y; Wang C Physiol Meas; 2024 Mar; 45(3):. PubMed ID: 38266290 [No Abstract] [Full Text] [Related]
15. Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Cai W; Chen Y; Guo J; Han B; Shi Y; Ji L; Wang J; Zhang G; Luo J Comput Biol Med; 2020 Jan; 116():103378. PubMed ID: 31778896 [TBL] [Abstract][Full Text] [Related]
16. Deep learning models for electrocardiograms are susceptible to adversarial attack. Han X; Hu Y; Foschini L; Chinitz L; Jankelson L; Ranganath R Nat Med; 2020 Mar; 26(3):360-363. PubMed ID: 32152582 [TBL] [Abstract][Full Text] [Related]
17. Automated ECG classification using a non-local convolutional block attention module. Wang J; Qiao X; Liu C; Wang X; Liu Y; Yao L; Zhang H Comput Methods Programs Biomed; 2021 May; 203():106006. PubMed ID: 33735660 [TBL] [Abstract][Full Text] [Related]
18. A novel deep learning approach for early detection of cardiovascular diseases from ECG signals. Aarthy ST; Mazher Iqbal JL Med Eng Phys; 2024 Mar; 125():104111. PubMed ID: 38508789 [TBL] [Abstract][Full Text] [Related]
19. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Yıldırım Ö; Pławiak P; Tan RS; Acharya UR Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122 [TBL] [Abstract][Full Text] [Related]
20. Assessing and Mitigating Bias in Medical Artificial Intelligence: The Effects of Race and Ethnicity on a Deep Learning Model for ECG Analysis. Noseworthy PA; Attia ZI; Brewer LC; Hayes SN; Yao X; Kapa S; Friedman PA; Lopez-Jimenez F Circ Arrhythm Electrophysiol; 2020 Mar; 13(3):e007988. PubMed ID: 32064914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]