These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34577683)

  • 1. Solidly Mounted Longitudinally Excited Shear Wave Resonator (YBAR) Based on Lithium Niobate Thin-Film.
    Qin ZH; Wu SM; Wang Y; Liu KF; Wu T; Yu SY; Chen YF
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Electromechanical Coupling Coefficient of Longitudinally Excited Shear Wave Resonator Based on Optimized Bragg Structure.
    Zhang Z; Xuan W; Jiang H; Xie W; Li Z; Dong S; Jin H; Luo J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Analysis of Lithium-Niobate-Based Laterally Excited Bulk Acoustic Wave Resonator with Pentagon Spiral Electrodes.
    Xie Y; Liu W; Cai Y; Wen Z; Luo T; Liu Y; Sun C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO
    Liu Y; Liu K; Li J; Li Y; Wu T
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Electromechanical Coupling Coefficient of a Laterally Excited Bulk Wave Resonator with Composite Piezoelectric Film.
    Xie Y; Liu Y; Liu J; Wang L; Liu W; Soon BW; Cai Y; Sun C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The High Q Factor Lateral Field⁻Excited Thickness Shear Mode Film Bulk Acoustic Resonator Working in Liquid.
    Chen D; Ren W; Song S; Wang J; Liu W; Wang P
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modelling of nanostructured piezoelectric resonators (NAPIERs).
    Southin JE; Whatmore RW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):654-62. PubMed ID: 15244278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral Field Excitation of Thickness Longitudinal Mode and Shear Mode With ZnO Based on Solidly Mounted Resonator.
    Meng SH; Huang AC; Chen YC; Yuan C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):1014-1021. PubMed ID: 30843829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of AlGaN High Frequency Bulk Acoustic Resonator by Reactive RF Magnetron Co-sputtering System.
    Chang YC; Chen YC; Cheng CC
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium Niobate MEMS Antisymmetric Lamb Wave Resonators with Support Structures.
    Zhang Y; Jiang Y; Tang C; Deng C; Du F; He J; Hu Q; Wang Q; Yu H; Wang Z
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BAW Resonator with an Optimized SiO
    Lv L; Shuai Y; Huang S; Zhu D; Wang Y; Luo W; Wu C; Zhang W
    ACS Omega; 2022 Jun; 7(24):20994-20999. PubMed ID: 35935285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Frequency and Spectrum-Clean Shear-Horizontal Acoustic Wave Resonators with AlN Overlay.
    Wu Z; Wu S; Bao F; Zou J
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications.
    Dou W; Zhou C; Qin R; Yang Y; Guo H; Mu Z; Yu W
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near Spurious-Free Thickness Shear Mode Lithium Niobate Resonator for Piezoelectric Power Conversion.
    Nguyen K; Chulukhadze V; Stolt E; Braun W; Segovia-Fernandez J; Chakraborty S; Rivas J; Lu R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Nov; 70(11):1536-1543. PubMed ID: 37549088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the shear acoustic velocities in the different materials composing a high frequency solidly mounted resonator.
    DeMiguel-Ramos M; Mirea T; Olivares J; Clement M; Sangrador J; Iborra E
    Ultrasonics; 2015 Sep; 62():195-9. PubMed ID: 26081919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Fabrication of 3.5 GHz Band-Pass Film Bulk Acoustic Resonator Filter.
    Zhou Y; Zheng Y; Xu Q; Qu Y; Ren Y; Huang X; Gao C; Liu Y; Guo S; Cai Y; Sun C
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plate mode propagation losses in solidly mounted resonators.
    Thalmayr F; Hashimoto KY; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2844-9. PubMed ID: 21156381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of textured thin piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators.
    Bjurström J; Wingqvist G; Katardjiev I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2095-100. PubMed ID: 17091844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of a Solid-State Tuning Behavior in Lithium Niobate.
    Branch DW; Jensen DS; Nordquist CD; Siddiqui A; Douglas JK; Eichenfield M; Friedmann TA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):365-373. PubMed ID: 31567077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametric study of laterally acoustically coupled bulk acoustic wave filters.
    Meltaus J; Pensala T; Kokkonen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2742-51. PubMed ID: 23221223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.