These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34577764)

  • 1. Fabrication of Microparticles with Front-Back Asymmetric Shapes Using Anisotropic Gelation.
    Lee D; Kitahata H; Ito H
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet-Based Microfluidic Preparation of Shape-Variable Alginate Hydrogel Magnetic Micromotors.
    Zhang C; Wang Y; Chen Y; Ma X; Chen W
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.
    Marquis M; Davy J; Cathala B; Fang A; Renard D
    Carbohydr Polym; 2015 Feb; 116():189-99. PubMed ID: 25458289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation.
    Huang KS; Lai TH; Lin YC
    Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and characterization of monodisperse deformable alginate and pNIPAM microparticles with a wide range of shear moduli.
    Hwang MY; Kim SG; Lee HS; Muller SJ
    Soft Matter; 2017 Aug; 13(34):5785-5794. PubMed ID: 28766673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of droplet-based microfluidic techniques in the preparation of microparticles.
    Naiserová M; Vysloužil J; Kubová K; Holická M; Vetchý D; Mašek J; Mašková E
    Ceska Slov Farm; 2021; 70(5):155-163. PubMed ID: 35114792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of droplet-based microfluidic techniques in the preparation of microparticles.
    Naiserová M; Vysloužil J; Kubová K; Holická M; Vetchý D; Mašek J; Mašková E
    Ceska Slov Farm; 2021; 70(5):155–163. PubMed ID: 34875837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-Laden Janus Droplets with Tunable Morphologies and Enhanced Stability for Fabricating Lens-Shaped Polymeric Microparticles.
    Xu S; Nisisako T
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33383964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary-assisted fabrication of biconcave polymeric microlenses from microfluidic ternary emulsion droplets.
    Nisisako T; Ando T; Hatsuzawa T
    Small; 2014 Dec; 10(24):5116-25. PubMed ID: 25123596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach.
    Ahmed H; Stokke BT
    Lab Chip; 2021 Jun; 21(11):2232-2243. PubMed ID: 33903873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Producing shape-engineered alginate particles using viscoplastic fluids.
    Asadi S; Nelson AZ; Doyle PS
    Soft Matter; 2022 Sep; 18(36):6848-6856. PubMed ID: 36043375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet shape control using microfluidics and designer biosurfactants.
    Gao Y; Zhao CX; Sainsbury F
    J Colloid Interface Sci; 2021 Feb; 584():528-538. PubMed ID: 33129162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic on-chip production of microgels using combined geometries.
    Shieh H; Saadatmand M; Eskandari M; Bastani D
    Sci Rep; 2021 Jan; 11(1):1565. PubMed ID: 33452407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of ethyl cellulose particles with different morphologies through microfluidics.
    Cui Y; Zhang H; Wang J
    Soft Matter; 2022 Feb; 18(7):1455-1462. PubMed ID: 35084427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic On-Chip Production of Alginate Hydrogels Using Double Coflow Geometry.
    Sattari A; Janfaza S; Mashhadi Keshtiban M; Tasnim N; Hanafizadeh P; Hoorfar M
    ACS Omega; 2021 Oct; 6(40):25964-25971. PubMed ID: 34660958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet microfluidics for fabrication of non-spherical particles.
    Shum HC; Abate AR; Lee D; Studart AR; Wang B; Chen CH; Thiele J; Shah RK; Krummel A; Weitz DA
    Macromol Rapid Commun; 2010 Jan; 31(2):108-18. PubMed ID: 21590882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous microfluidic fabrication of anisotropic microparticles for enhanced wastewater purification.
    Deng X; Ren Y; Hou L; Jiang T; Jiang H
    Lab Chip; 2021 Apr; 21(8):1517-1526. PubMed ID: 33606871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.