BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34578055)

  • 1. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering.
    Rana MM; De la Hoz Siegler H
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers.
    Kim S; Lee K; Cha C
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1698-1711. PubMed ID: 27573586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium.
    Dosh RH; Essa A; Jordan-Mahy N; Sammon C; Le Maitre CL
    Acta Biomater; 2017 Oct; 62():128-143. PubMed ID: 28859901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering.
    Ribeiro CA; Martins MVS; Bressiani AH; Bressiani JC; Leyva ME; de Queiroz AAA
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():156-166. PubMed ID: 28887960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study.
    Atoufi Z; Kamrava SK; Davachi SM; Hassanabadi M; Saeedi Garakani S; Alizadeh R; Farhadi M; Tavakol S; Bagher Z; Hashemi Motlagh G
    Int J Biol Macromol; 2019 Oct; 139():1168-1181. PubMed ID: 31419553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
    Zhang X; Yan Z; Guan G; Lu Z; Yan S; Du A; Wang L; Li Q
    J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoresponsive Alginate-Graft-pNIPAM/Methyl Cellulose 3D-Printed Scaffolds Promote Osteogenesis In Vitro.
    Gialouri A; Saravanou SF; Loukelis K; Chatzinikolaidou M; Pasparakis G; Bouropoulos N
    Gels; 2023 Dec; 9(12):. PubMed ID: 38131970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular polymer/peptide hybrid hydrogels with tunable stiffness mediated by interchain acid-amide hydrogen bonds.
    Liu YS; Chakravarthy RD; Saddik AA; Mohammed M; Lin HC
    RSC Adv; 2022 May; 12(22):14315-14320. PubMed ID: 35558843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Temperature-Dependent Hydrogel Emulsion with Sol/Gel Reversible Phase Transition Behavior Based on Polystyrene-co-poly(N-isopropylacrylamide)/Poly(N-isopropylacrylamide) Core-Shell Nanoparticle.
    Jiang Y; Yan R; Pang B; Mi J; Zhang Y; Liu H; Xin J; Zhang Y; Li N; Zhao Y; Lin Q
    Macromol Rapid Commun; 2021 Jan; 42(2):e2000507. PubMed ID: 33210416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration.
    Xia H; Zhao D; Zhu H; Hua Y; Xiao K; Xu Y; Liu Y; Chen W; Liu Y; Zhang W; Liu W; Tang S; Cao Y; Wang X; Chen HH; Zhou G
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31704-31715. PubMed ID: 30157627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body temperature-activated protein-based injectable adhesive hydrogel incorporated with decellularized adipose extracellular matrix for tissue-specific regenerative stem cell therapy.
    Jeon EY; Joo KI; Cha HJ
    Acta Biomater; 2020 Sep; 114():244-255. PubMed ID: 32702528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of PNIPAM based hydrogels: A review.
    Haq MA; Su Y; Wang D
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):842-855. PubMed ID: 27770962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(
    Ansari MJ; Rajendran RR; Mohanto S; Agarwal U; Panda K; Dhotre K; Manne R; Deepak A; Zafar A; Yasir M; Pramanik S
    Gels; 2022 Jul; 8(7):. PubMed ID: 35877539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration.
    Shanto PC; Park S; Park M; Lee BT
    Biomater Adv; 2023 Feb; 145():213239. PubMed ID: 36542879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications.
    Xu X; Liu Y; Fu W; Yao M; Ding Z; Xuan J; Li D; Wang S; Xia Y; Cao M
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32150904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review.
    Tajik S; Garcia CN; Gillooley S; Tayebi L
    Regen Eng Transl Med; 2023 Mar; 9(1):29-41. PubMed ID: 37193257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in scaffolds used for pulp-dentine complex tissue engineering: A narrative review.
    Noohi P; Abdekhodaie MJ; Nekoofar MH; Galler KM; Dummer PMH
    Int Endod J; 2022 Dec; 55(12):1277-1316. PubMed ID: 36039729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering.
    Salar Amoli M; Anand R; EzEldeen M; Geris L; Jacobs R; Bloemen V
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.