BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34578072)

  • 1. Outdoor Wood Mats-Based Engineering Composite: Influence of Process Parameters on Decay Resistance against Wood-Degrading Fungi
    Bao M; Li N; Bao Y; Li J; Zhong H; Chen Y; Yu Y
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of
    Olatinwo R; So CL; Eberhardt TL
    Mycobiology; 2019; 47(4):506-511. PubMed ID: 32010472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Laccase Gene Reporting System That Enables Genetic Manipulations in a Brown Rot Wood Decomposer Fungus
    Li W; Ayers C; Huang W; Schilling JS; Cullen D; Zhang J
    Microbiol Spectr; 2023 Feb; 11(1):e0424622. PubMed ID: 36651769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alumina as an Antifungal Agent for
    Acosta AP; Gallio E; Cruz N; Aramburu AB; Lunkes N; Missio AL; Delucis RA; Gatto DA
    J Fungi (Basel); 2022 Dec; 8(12):. PubMed ID: 36547632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi.
    Presley GN; Panisko E; Purvine SO; Schilling JS
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomics Highlights Different Life History Strategies of White and Brown Rot Wood-Degrading Fungi.
    Castaño JD; Muñoz-Muñoz N; Kim YM; Liu J; Yang L; Schilling JS
    mSphere; 2022 Dec; 7(6):e0054522. PubMed ID: 36468887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening and Evaluation of
    Jung SJ; Kim NK; Lee DH; Hong SI; Lee JK
    Mycobiology; 2018; 46(2):138-146. PubMed ID: 29963315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chelating efficiency and thermal, mechanical and decay resistance performances of chitosan copper complex in wood-polymer composites.
    Lu JZ; Duan X; Wu Q; Lian K
    Bioresour Technol; 2008 Sep; 99(13):5906-14. PubMed ID: 18248812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal Selectivity and Biodegradation Effects by White and Brown Rot Fungi for Wood Biomass Pretreatment.
    Qi J; Li F; Jia L; Zhang X; Deng S; Luo B; Zhou Y; Fan M; Xia Y
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance of in natura and torrefied wood chips to xylophage fungi.
    Castro VR; de Castro Freitas MP; Zanuncio AJV; Zanuncio JC; Surdi PG; Carneiro ACO; Vital BR
    Sci Rep; 2019 Jul; 9(1):11068. PubMed ID: 31363114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.
    Hastrup AC; Howell C; Larsen FH; Sathitsuksanoh N; Goodell B; Jellison J
    Fungal Biol; 2012 Oct; 116(10):1052-63. PubMed ID: 23063184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural decomposition of hornbeam wood decayed by the white rot fungus Trametes versicolor.
    Karim M; Daryaei MG; Torkaman J; Oladi R; Ghanbary MAT; Bari E; Yilgor N
    An Acad Bras Cienc; 2017; 89(4):2647-2655. PubMed ID: 29236849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis.
    Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J
    Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the Decay Behavior of Two White-Rot Fungi in Relation to Wood Type and Exposure Conditions.
    Bari E; Daniel G; Yilgor N; Kim JS; Tajick-Ghanbary MA; Singh AP; Ribera J
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33291813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Transcriptomics During Brown Rot Decay in Three Fungi Reveals Strain-Specific Degradative Strategies and Responses to Wood Acetylation.
    Kölle M; Crivelente Horta MA; Benz JP; Pilgård A
    Front Fungal Biol; 2021; 2():701579. PubMed ID: 37744145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of carbon source on wood decay-associated gene expression in sequential hyphal zones of the brown rot fungus Gloeophyllum trabeum.
    Umezawa K; Itakura S
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1782-1788. PubMed ID: 33942872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin Nanoparticles with Entrapped
    Zikeli F; Vettraino AM; Biscontri M; Bergamasco S; Palocci C; Humar M; Romagnoli M
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.
    Krueger MC; Hofmann U; Moeder M; Schlosser D
    PLoS One; 2015; 10(7):e0131773. PubMed ID: 26147966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Durability of heat-treated Paulownia tomentosa and Pinus koraiensis woods in palm oil and air against brown- and white-rot fungi.
    Suri IF; Purusatama BD; Kim JH; Hidayat W; Hwang WJ; Iswanto AH; Park SY; Lee SH; Kim NH
    Sci Rep; 2023 Dec; 13(1):21929. PubMed ID: 38081973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Manufacturing Strand-Based Wood Composite Treated with β-Cyclodextrin-Boric Acid for Fungal Decay Resistance.
    Cai L; Lim H; Fitzkee NC; Cosovic B; Jeremic D
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 32013123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.