These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34578100)

  • 1. Copper Rich Composite Materials Based on Carboxylic Cation Exchangers and Their Thermal Transformation.
    Kociołek-Balawejder E; Stanisławska E; Jacukowicz-Sobala I; Mucha I
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of Cu
    Kociołek-Balawejder E; Winiarska K; Winiarski J; Mucha I
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakly Hydrated Anion Exchangers Doped with Cu
    Kociołek-Balawejder E; Stanisławska E; Mucha I
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-Controlled Transformation of Cu
    Jacukowicz-Sobala I; Stanisławska E; Baszczuk A; Jasiorski M; Kociołek-Balawejder E
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33182309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Composite Materials Based on Anion Exchangers Modified with Copper Compounds-A Review of Their Synthesis Methods, Characteristics and Applications.
    Kociołek-Balawejder E; Stanisławska E; Mucha I; Ociński D; Jacukowicz-Sobala I
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ preparation of sulfonated carbonaceous copper oxide-zirconia nanocomposite as a novel and recyclable solid acid catalyst for reduction of 4-nitrophenol.
    Farrag M
    Sci Rep; 2023 Jun; 13(1):10123. PubMed ID: 37349346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency synthesis of Cu superfine particles via reducing cuprous and cupric oxides with monoethanolamine and their antimicrobial potentials.
    Feng Y; Lv X; Ran X; Jia C; Qin L; Chen M; Qi R; Peng H; Lin H
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):749-757. PubMed ID: 34634547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol Adsorption on and Reduction of Copper Oxide Particles and Surfaces.
    Wang Y; Im J; Soares JW; Steeves DM; Whitten JE
    Langmuir; 2016 Apr; 32(16):3848-57. PubMed ID: 27036074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A controllable transformation in copper valence states and its applications.
    Yang J; Song le X; Yang J; Dang Z; Chen J
    Dalton Trans; 2012 Feb; 41(8):2393-8. PubMed ID: 22200050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples.
    Yashnik SA; Surovtsova TA; Salnikov AV; Parmon VN
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of hybrid materials containing iron oxide for removal of sulfides from water.
    Jacukowicz-Sobala I; Wilk ŁJ; Drabent K; Kociołek-Balawejder E
    J Colloid Interface Sci; 2015 Dec; 460():154-63. PubMed ID: 26319332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons.
    Wang CH; Lin SS; Chen CL; Weng HS
    Chemosphere; 2006 Jun; 64(3):503-9. PubMed ID: 16403565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Ketoiminato-based copper(ii) complexes as CVD precursors for copper and copper oxide layer formation.
    Pousaneh E; Korb M; Dzhagan V; Weber M; Noll J; Mehring M; Zahn DRT; Schulz SE; Lang H
    Dalton Trans; 2018 Jul; 47(30):10002-10016. PubMed ID: 29916515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.
    Wong TKS; Zhuk S; Masudy-Panah S; Dalapati GK
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic change of copper in fly ash during de novo synthesis of dioxins.
    Takaoka M; Shiono A; Nishimura K; Yamamoto T; Uruga T; Takeda N; Tanaka T; Oshita K; Matsumoto T; Harada H
    Environ Sci Technol; 2005 Aug; 39(15):5878-84. PubMed ID: 16124329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual Cu-Co/GO Composite with Special High Organic Content Synthesized by an
    Wang J; Lian X; Yan Q; Gao D; Zhao F; Xu K
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28496-28509. PubMed ID: 32453571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Thermal Expansion of Cu-90 vol. % Graphite Composites.
    Opálek A; Emmer Š; Čička R; Beronská N; Oslanec P; Kováčik J
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and enhanced room-temperature thermoelectric properties of CuO-MWCNT hybrid nanostructured composites.
    Sondors R; Gavars D; Spalva E; Kons A; Lohmus R; Volkova M; Meija R; Andzane J
    Nanoscale Adv; 2024 Jan; 6(2):697-704. PubMed ID: 38235080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation process of metallic copper fine particles from cupric oxide microparticles at room temperature.
    Yonezawa T; Uchida Y; Abe Y
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5402-7. PubMed ID: 24758039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Synthesis of Bimetallic Tungsten-Copper Nanoparticles via Reactive Radio-Frequency (RF) Thermal Plasma.
    Oh JW; Na H; Cho YS; Choi H
    Nanoscale Res Lett; 2018 Jul; 13(1):220. PubMed ID: 30043360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.