BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34578417)

  • 1. A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery.
    Hennig T; Djakovic L; Dölken L; Whisnant AW
    Viruses; 2021 Sep; 13(9):. PubMed ID: 34578417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection.
    Birkenheuer CH; Danko CG; Baines JD
    J Virol; 2018 Apr; 92(8):. PubMed ID: 29437966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infection by Herpes Simplex Virus 1 Causes Near-Complete Loss of RNA Polymerase II Occupancy on the Host Cell Genome.
    Abrisch RG; Eidem TM; Yakovchuk P; Kugel JF; Goodrich JA
    J Virol; 2015 Dec; 90(5):2503-13. PubMed ID: 26676778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSV-1 Infection Induces a Downstream Shift of Promoter-Proximal Pausing for Host Genes.
    Weiß E; Hennig T; Graßl P; Djakovic L; Whisnant AW; Jürges CS; Koller F; Kluge M; Erhard F; Dölken L; Friedel CC
    J Virol; 2023 May; 97(5):e0038123. PubMed ID: 37093003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Polymerase II Promoter-Proximal Pausing and Release to Elongation Are Key Steps Regulating Herpes Simplex Virus 1 Transcription.
    Birkenheuer CH; Baines JD
    J Virol; 2020 Feb; 94(5):. PubMed ID: 31826988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting Herpes Simplex Virus 1-Induced Host Shutoff at the RNA Level.
    Friedel CC; Whisnant AW; Djakovic L; Rutkowski AJ; Friedl MS; Kluge M; Williamson JC; Sai S; Vidal RO; Sauer S; Hennig T; Grothey A; Milić A; Prusty BK; Lehner PJ; Matheson NJ; Erhard F; Dölken L
    J Virol; 2021 Jan; 95(3):. PubMed ID: 33148793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of RNA polymerase III by Herpes Simplex Virus-1.
    Dremel SE; Sivrich FL; Tucker JM; Glaunsinger BA; DeLuca NA
    Nat Commun; 2022 Feb; 13(1):623. PubMed ID: 35110532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of herpes simplex virus type 1 ICP8 and ICP27 proteins with cellular RNA polymerase II holoenzyme.
    Zhou C; Knipe DM
    J Virol; 2002 Jun; 76(12):5893-904. PubMed ID: 12021322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections.
    Sadek J; Read GS
    J Virol; 2016 Dec; 90(23):10844-10856. PubMed ID: 27681125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Herpes Simplex Virus 1 Protein ICP4 Acts as both an Activator and a Repressor of Host Genome Transcription during Infection.
    Rivas T; Goodrich JA; Kugel JF
    Mol Cell Biol; 2021 Sep; 41(10):e0017121. PubMed ID: 34251885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program.
    Rice SA; Long MC; Lam V; Schaffer PA; Spencer CA
    J Virol; 1995 Sep; 69(9):5550-9. PubMed ID: 7637000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden regulation of herpes simplex virus 1 pre-mRNA splicing and polyadenylation by virally encoded immediate early gene ICP27.
    Tang S; Patel A; Krause PR
    PLoS Pathog; 2019 Jun; 15(6):e1007884. PubMed ID: 31206552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27.
    Wang X; Hennig T; Whisnant AW; Erhard F; Prusty BK; Friedel CC; Forouzmand E; Hu W; Erber L; Chen Y; Sandri-Goldin RM; Dölken L; Shi Y
    Nat Commun; 2020 Jan; 11(1):293. PubMed ID: 31941886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ICP22 of Herpes Simplex Virus 1 Decreases RNA Polymerase Processivity.
    Birkenheuer CH; Dunn L; Dufour R; Baines JD
    J Virol; 2022 Mar; 96(5):e0219121. PubMed ID: 35019725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection.
    Wyler E; Menegatti J; Franke V; Kocks C; Boltengagen A; Hennig T; Theil K; Rutkowski A; Ferrai C; Baer L; Kermas L; Friedel C; Rajewsky N; Akalin A; Dölken L; Grässer F; Landthaler M
    Genome Biol; 2017 Oct; 18(1):209. PubMed ID: 29089033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repression of host RNA polymerase II transcription by herpes simplex virus type 1.
    Spencer CA; Dahmus ME; Rice SA
    J Virol; 1997 Mar; 71(3):2031-40. PubMed ID: 9032335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection.
    Rice SA; Long MC; Lam V; Spencer CA
    J Virol; 1994 Feb; 68(2):988-1001. PubMed ID: 8289400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II.
    Fraser KA; Rice SA
    J Virol; 2005 Sep; 79(17):11323-34. PubMed ID: 16103184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection.
    Herrera FJ; Triezenberg SJ
    J Virol; 2004 Sep; 78(18):9689-96. PubMed ID: 15331701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.
    Kulej K; Avgousti DC; Sidoli S; Herrmann C; Della Fera AN; Kim ET; Garcia BA; Weitzman MD
    Mol Cell Proteomics; 2017 Apr; 16(4 suppl 1):S92-S107. PubMed ID: 28179408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.