These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34578480)

  • 21. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity.
    Sharma VK; Siskova KM; Zboril R; Gardea-Torresdey JL
    Adv Colloid Interface Sci; 2014 Feb; 204():15-34. PubMed ID: 24406050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review.
    Flores-López LZ; Espinoza-Gómez H; Somanathan R
    J Appl Toxicol; 2019 Jan; 39(1):16-26. PubMed ID: 29943411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticle's uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review.
    Khan I; Awan SA; Rizwan M; Hassan ZU; Akram MA; Tariq R; Brestic M; Xie W
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):89823-89833. PubMed ID: 36344893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transfer of sulfidized silver from silver nanoparticles, in sewage sludge, to plants and primary consumers in agricultural soil environment.
    Courtois P; de Vaufleury A; Grosser A; Lors C; Vandenbulcke F
    Sci Total Environ; 2021 Jul; 777():145900. PubMed ID: 33676211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4).
    Jang MH; Lee S; Hwang YS
    PLoS One; 2015; 10(11):e0143149. PubMed ID: 26575993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms.
    Rather MA; Bhat IA; Sharma N; Sharma R
    Adv Exp Med Biol; 2018; 1048():263-284. PubMed ID: 29453544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms.
    Ottoni CA; Lima Neto MC; Léo P; Ortolan BD; Barbieri E; De Souza AO
    Chemosphere; 2020 Jan; 239():124698. PubMed ID: 31493753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silver nanoparticles in the environment: Sources, detection and ecotoxicology.
    McGillicuddy E; Murray I; Kavanagh S; Morrison L; Fogarty A; Cormican M; Dockery P; Prendergast M; Rowan N; Morris D
    Sci Total Environ; 2017 Jan; 575():231-246. PubMed ID: 27744152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TiO
    Liu J; Williams PC; Goodson BM; Geisler-Lee J; Fakharifar M; Gemeinhardt ME
    Environ Res; 2019 May; 172():202-215. PubMed ID: 30818230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment.
    Whiteley CM; Dalla Valle M; Jones KC; Sweetman AJ
    Environ Sci Process Impacts; 2013 Oct; 15(11):2050-8. PubMed ID: 24056694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials.
    O'Brien N; Cummins E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):992-1007. PubMed ID: 20486008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives.
    Ali SS; Al-Tohamy R; Koutra E; Moawad MS; Kornaros M; Mustafa AM; Mahmoud YA; Badr A; Osman MEH; Elsamahy T; Jiao H; Sun J
    Sci Total Environ; 2021 Oct; 792():148359. PubMed ID: 34147795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil.
    Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW
    Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates.
    Tourinho PS; van Gestel CA; Lofts S; Svendsen C; Soares AM; Loureiro S
    Environ Toxicol Chem; 2012 Aug; 31(8):1679-92. PubMed ID: 22573562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silver as an antimicrobial: facts and gaps in knowledge.
    Maillard JY; Hartemann P
    Crit Rev Microbiol; 2013 Nov; 39(4):373-83. PubMed ID: 22928774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotemplate-Mediated Green Synthesis and Applications of Nanomaterials.
    Ullah MW; Manan S; Khattak WA; Shahzad A; Ul-Islam M; Yang G
    Curr Pharm Des; 2020; 26(45):5819-5836. PubMed ID: 33155898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment.
    Saleem H; Zaidi SJ
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32906594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.