These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 34578508)

  • 1. Analysis of Thermoelectric Energy Harvesting with Graphene Aerogel-Supported Form-Stable Phase Change Materials.
    Yu C; Song YS
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Change Material (PCM) Composite Supported by 3D Cross-Linked Porous Graphene Aerogel.
    Yu C; Song YS
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified Supporting Materials to Fabricate Form Stable Phase Change Material with High Thermal Energy Storage.
    Yu C; Song Y
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Phase Change Materials Fabricated with Cross-Linked Graphene Aerogels.
    Yu C; Song YS
    Gels; 2022 Sep; 8(9):. PubMed ID: 36135284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous harvesting of radiative cooling and solar heating for transverse thermoelectric generation.
    Ishii S; Miura A; Nagao T; Uchida KI
    Sci Technol Adv Mater; 2021; 22(1):441-448. PubMed ID: 34248419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials.
    Mu B; Li M
    Sci Rep; 2018 Jun; 8(1):8878. PubMed ID: 29891967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lightweight, strong, and form-stable cellulose nanofibrils phase change aerogel with high latent heat.
    Song M; Jiang J; Zhu J; Zheng Y; Yu Z; Ren X; Jiang F
    Carbohydr Polym; 2021 Nov; 272():118460. PubMed ID: 34420720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unidirectionally Structured Magnetic Phase-Change Composite Based on Carbonized Polyimide/Kevlar Nanofiber Complex Aerogel for Boosting Solar-Thermo-Electric Energy Conversion.
    Shi T; Liu H; Wang X
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10180-10195. PubMed ID: 38362656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Form-Stable Composite Phase Change Materials Based on Porous Copper-Graphene Heterostructures for Solar Thermal Energy Conversion and Storage.
    Chang C; Li B; Fu B; Yang X; Ji Y
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling.
    Lee J; Asheghi M; Goodson KE
    Nanotechnology; 2012 May; 23(20):205201. PubMed ID: 22543873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization Design and Performance Study of Wearable Thermoelectric Device Using Phase Change Material as Heat Sink.
    Xin J; Xu G; Guo T; Nan B
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate/Graphene Oxide/Graphene Nanosheet/Polyethylene Glycol Phase-Change Composites with Superior Thermal Management for Photo-thermoelectric Generators.
    Yang ZY; Jin XZ; Chen SY; Lei YZ; Wang Y
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47111-47124. PubMed ID: 37768923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Harvesting from a Thermoelectric Zinc Antimonide Thin Film under Steady and Unsteady Operating Conditions.
    Mirhosseini M; Rezania A; Iversen B; Rosendahl L
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30477227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-Mannitol/Graphene Phase-Change Composites with Structured Conformation and Thermal Pathways Allow Durable Solar-Thermal-Electric Conversion and Electricity Output.
    Lin W; Lai J; Xie K; Liu D; Wu K; Fu Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38981-38989. PubMed ID: 35989565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.
    Jun D; Kim S; Choi W; Kim J; Zyung T; Jang M
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7472-5. PubMed ID: 26726353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Nonlinear Transient Energy Effect on Thermoelectric Energy Storage Structure.
    Yu J; Zhu H; Kong L; Wang H; Su J; Zhu Q
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Power Thermoelectric Generator Based on Vertical Silicon Nanowires.
    Elyamny S; Dimaggio E; Magagna S; Narducci D; Pennelli G
    Nano Lett; 2020 Jul; 20(7):4748-4753. PubMed ID: 32463681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel and stable way for energy harvesting from Bi
    Fatima N; Karimov KS; Qasuria TA; Ibrahim MA
    J Alloys Compd; 2020 Dec; 849():156702. PubMed ID: 32834521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Carbohydr Polym; 2021 Dec; 273():118585. PubMed ID: 34560986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Glass Fiber Polymer Composite Laminate Operating as a Thermoelectric Generator: A Structural Device for Micropower Generation and Potential Large-Scale Thermal Energy Harvesting.
    Karalis G; Tzounis L; Tsirka K; Mytafides CK; Voudouris Itskaras A; Liebscher M; Lambrou E; Gergidis LN; Barkoula NM; Paipetis AS
    ACS Appl Mater Interfaces; 2021 May; 13(20):24138-24153. PubMed ID: 33988382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.