These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 34578606)
1. Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells. Lu Y; Mi Y; Li J; Qi F; Yan S; Dong W Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578606 [TBL] [Abstract][Full Text] [Related]
2. Remarkable Ionic Conductivity in a LZO-SDC Composite for Low-Temperature Solid Oxide Fuel Cells. Tu Z; Tian Y; Liu M; Jin B; Akbar M; Mushtaq N; Wang X; Dong W; Wang B; Xia C Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578593 [TBL] [Abstract][Full Text] [Related]
3. Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells. Xia C; Qiao Z; Feng C; Kim JS; Wang B; Zhu B Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29283395 [TBL] [Abstract][Full Text] [Related]
4. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes. Belousov VV Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402 [TBL] [Abstract][Full Text] [Related]
5. Enabling fast ionic transport in CeO Shaheen N; Chen Z; Alomar M; Su T; Nong Y; Althubaiti N; Yousaf M; Lu Y; Liu Q RSC Adv; 2023 Jul; 13(30):20663-20673. PubMed ID: 37435385 [TBL] [Abstract][Full Text] [Related]
6. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Fabbri E; Pergolesi D; Traversa E Sci Technol Adv Mater; 2010 Aug; 11(4):044301. PubMed ID: 27877342 [TBL] [Abstract][Full Text] [Related]
7. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes. Fabbri E; Bi L; Pergolesi D; Traversa E Adv Mater; 2012 Jan; 24(2):195-208. PubMed ID: 21953861 [TBL] [Abstract][Full Text] [Related]
8. A novel yttrium stabilized zirconia and ceria composite electrolyte lowering solid oxide fuel cells working temperature to 400 °C. Liu Y; Zuo L; Ye Y; Jiang C; Zheng D; Liu C; Wang B; Wang X RSC Adv; 2023 Nov; 13(47):33430-33436. PubMed ID: 38025855 [TBL] [Abstract][Full Text] [Related]
9. The Properties of Intermediate-Temperature Solid Oxide Fuel Cells with Thin Film Gadolinium-Doped Ceria Electrolyte. Solovyev A; Shipilova A; Smolyanskiy E; Rabotkin S; Semenov V Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135914 [TBL] [Abstract][Full Text] [Related]
10. Zirconia- and ceria-based electrolytes for fuel cell applications: critical advancements toward sustainable and clean energy production. Maiti TK; Majhi J; Maiti SK; Singh J; Dixit P; Rohilla T; Ghosh S; Bhushan S; Chattopadhyay S Environ Sci Pollut Res Int; 2022 Sep; 29(43):64489-64512. PubMed ID: 35864400 [TBL] [Abstract][Full Text] [Related]
11. Layered LiCoO Liu Y; Xia C; Wang B; Tang Y Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34066529 [TBL] [Abstract][Full Text] [Related]
12. A-site deficient semiconductor electrolyte Sr Lu Y; Yousaf Shah MAK; Mushtaq N; Yousaf M; Lund PD; Zhu B; Asghar MI RSC Adv; 2022 Aug; 12(38):24480-24490. PubMed ID: 36128392 [TBL] [Abstract][Full Text] [Related]
13. Alternative Strategy for Development of Dielectric Calcium Copper Titanate-Based Electrolytes for Low-Temperature Solid Oxide Fuel Cells. Rauf S; Hanif MB; Tayyab Z; Veis M; Yousaf Shah MAK; Mushtaq N; Medvedev D; Tian Y; Xia C; Motola M; Zhu B Nanomicro Lett; 2024 Sep; 17(1):13. PubMed ID: 39325255 [TBL] [Abstract][Full Text] [Related]
14. High-performing and stable semiconductor yttrium-doped gadolinium electrolyte for low-temperature solid oxide fuel cells. Li J; Yousaf M; Akbar M; Noor A; Enyi H; Shah MAKY; Sial QA; Mushtaq N; Lu Y Chem Commun (Camb); 2023 May; 59(41):6223-6226. PubMed ID: 37129587 [TBL] [Abstract][Full Text] [Related]
15. Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 °C. Zhang Y; Knibbe R; Sunarso J; Zhong Y; Zhou W; Shao Z; Zhu Z Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28628239 [TBL] [Abstract][Full Text] [Related]
16. Improved Ionic Transport Using a Novel Semiconductor Co Dong Y; Mushtaq N; Shah MAKY; Yousaf M; Lu Y; Cao P; Ma Q; Deng C Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368317 [TBL] [Abstract][Full Text] [Related]
17. The sintering temperature effect on electrochemical properties of Ce Nie X; Chen Y; Mushtaq N; Rauf S; Wang B; Dong W; Wang X; Wang H; Zhu B Nanoscale Res Lett; 2019 May; 14(1):162. PubMed ID: 31089827 [TBL] [Abstract][Full Text] [Related]
19. Development of Melilite-Type Oxide Ion Conductors. Zhou L; Xu J; Allix M; Kuang X Chem Rec; 2020 Oct; 20(10):1117-1128. PubMed ID: 32729677 [TBL] [Abstract][Full Text] [Related]
20. The need for nano-scale modeling in solid oxide fuel cells. Ryan EM; Recknagle KP; Liu W; Khaleel MA J Nanosci Nanotechnol; 2012 Aug; 12(8):6758-68. PubMed ID: 22962819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]