These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34578691)

  • 1. Reconsideration of Nanowire Growth Theory at Low Temperatures.
    Dubrovskii VG
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the Length and Radius of Catalyst-Free III-V Nanowires Grown by Selective Area Epitaxy.
    Dubrovskii VG
    ACS Omega; 2019 May; 4(5):8400-8405. PubMed ID: 31459928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Catalyst-Free Growth of III-V Nanowires: Empirical and Rigorous Approaches.
    Dubrovskii VG
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Radial Growth of Self-Catalyzed III-V Nanowires.
    Dubrovskii VG; Leshchenko ED
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of MBE Growth of Nanowires on Adsorbing Substrates: The Role of the Shadowing Effect on the Diffusion Transport.
    Dubrovskii VG
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of MBE Growth of Nanowires on Reflecting Substrates.
    Dubrovskii VG
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of point defect reactions for the atomic-scale roughness of III-V nanowire sidewalls.
    Díaz Álvarez A; Peric N; Franchina Vergel NA; Nys JP; Berthe M; Patriarche G; Harmand JC; Caroff P; Plissard S; Ebert P; Xu T; Grandidier B
    Nanotechnology; 2019 Aug; 30(32):324002. PubMed ID: 30995632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of MOCVD Growth of III-V Nanowires on Patterned Substrates.
    Dubrovskii VG
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires.
    Dubrovskii VG; Xu T; Álvarez AD; Plissard SR; Caroff P; Glas F; Grandidier B
    Nano Lett; 2015 Aug; 15(8):5580-4. PubMed ID: 26189571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the Shadowing Effect on the Crystal Structure of Patterned Self-Catalyzed GaAs Nanowires.
    Schroth P; Al Humaidi M; Feigl L; Jakob J; Al Hassan A; Davtyan A; Küpers H; Tahraoui A; Geelhaar L; Pietsch U; Baumbach T
    Nano Lett; 2019 Jul; 19(7):4263-4271. PubMed ID: 31150261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrier gas effects on aluminum-catalyzed nanowire growth.
    Ke Y; Hainey M; Won D; Weng X; Eichfeld SM; Redwing JM
    Nanotechnology; 2016 Apr; 27(13):135605. PubMed ID: 26900836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-catalyzed InAs nanowires grown on Si: the key role of kinetics on their morphology.
    Dhungana DS; Mallet N; Fazzini PF; Larrieu G; Cristiano F; Plissard SR
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35998566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed modeling of the epitaxial growth of GaAs nanowires.
    De Jong E; LaPierre RR; Wen JZ
    Nanotechnology; 2010 Jan; 21(4):045602. PubMed ID: 20009168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the dynamics of interface morphology and crystal phase change in self-catalyzed GaAs nanowires.
    Wilson DP; Sokolovskii AS; LaPierre RR; Panciera F; Glas F; Dubrovskii VG
    Nanotechnology; 2020 Nov; 31(48):485602. PubMed ID: 32931461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of patterned self-assisted nanowire growth.
    Gibson SJ; LaPierre RR
    Nanotechnology; 2014 Oct; 25(41):415304. PubMed ID: 25258192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium.
    Kim H; Ren D; Farrell AC; Huffaker DL
    Nanotechnology; 2018 Feb; 29(8):085601. PubMed ID: 29300185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape modification of III-V nanowires: the role of nucleation on sidewalls.
    Dubrovskii VG; Sibirev NV; Cirlin GE; Tchernycheva M; Harmand JC; Ustinov VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031606. PubMed ID: 18517394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of axial growth by boron incorporation in GaAs nanowires grown by self-catalyzed molecular beam epitaxy.
    Lancaster S; Groiss H; Zederbauer T; Andrews AM; MacFarland D; Schrenk W; Strasser G; Detz H
    Nanotechnology; 2019 Feb; 30(6):065602. PubMed ID: 30523852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst Composition Tuning: The Key for the Growth of Straight Axial Nanowire Heterostructures with Group III Interchange.
    Zannier V; Ercolani D; Gomes UP; David J; Gemmi M; Dubrovskii VG; Sorba L
    Nano Lett; 2016 Nov; 16(11):7183-7190. PubMed ID: 27760298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of Sn addition on GaAs nanowire grown by vapor-liquid-solid growth mechanism.
    Gao H; Lysevych M; Tan HH; Jagadish C; Zou J
    Nanotechnology; 2018 Nov; 29(46):465601. PubMed ID: 30179858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.