These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Polymeric Reactor for the Synthesis of Superparamagnetic-Thermal Treatment of Breast Cancer. Alhasan AH; Fardous RS; Alsudir SA; Majrashi MA; Alghamdi WM; Alsharaeh EH; Almalik AM Mol Pharm; 2019 Aug; 16(8):3577-3587. PubMed ID: 31291120 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the Application of Reduced Graphene Oxide-SPION Quantum Dots for Magnetic Hyperthermia. Omar H; Alkurdi YA; Fathima A; Alsharaeh EH Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404274 [TBL] [Abstract][Full Text] [Related]
4. Single and Dual Surfactants Coated Hydrophilic Superparamagnetic Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia Applications. Sudame A; Kandasamy G; Maity D J Nanosci Nanotechnol; 2019 Jul; 19(7):3991-3999. PubMed ID: 30764960 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting. Mojica Pisciotti ML; Lima E; Vasquez Mansilla M; Tognoli VE; Troiani HE; Pasa AA; Creczynski-Pasa TB; Silva AH; Gurman P; Colombo L; Goya GF; Lamagna A; Zysler RD J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):860-8. PubMed ID: 24458920 [TBL] [Abstract][Full Text] [Related]
6. [Preparation and characterization of citric acid-modified superparamagnetic iron oxide nanoparticles]. Wang H; Qin XY; Li ZY; Zheng ZZ; Fan TY Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):340-346. PubMed ID: 29643537 [TBL] [Abstract][Full Text] [Related]
7. N-Hydroxysuccinamide functionalized iron oxide nanoparticles conjugated with 5-flurouracil for hyperthermic therapy of malignant liver cancer cells by DNA repair disruption. Veeramani S; Chandrababu L; Rajangam I; Singh NR; Al-Humaid L; Al-Dahmash ND; Balaji R; Chandrasekar N; Hwang MT Int J Biol Macromol; 2023 Oct; 250():126001. PubMed ID: 37532190 [TBL] [Abstract][Full Text] [Related]
8. SPIONs Prepared in Air through Improved Synthesis Methodology: The Influence of γ-Fe Matos JC; Gonçalves MC; Pereira LCJ; Vieira BJC; Waerenborgh JC Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261832 [TBL] [Abstract][Full Text] [Related]
10. Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia. Das P; Salvioni L; Malatesta M; Vurro F; Mannucci S; Gerosa M; Antonietta Rizzuto M; Tullio C; Degrassi A; Colombo M; Ferretti AM; Ponti A; Calderan L; Prosperi D J Colloid Interface Sci; 2020 Nov; 579():186-194. PubMed ID: 32590159 [TBL] [Abstract][Full Text] [Related]
11. GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance. Sugumaran PJ; Liu XL; Herng TS; Peng E; Ding J ACS Appl Mater Interfaces; 2019 Jun; 11(25):22703-22713. PubMed ID: 31244027 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity. Ji Z; Shen X; Yue X; Zhou H; Yang J; Wang Y; Ma L; Chen K J Colloid Interface Sci; 2015 Dec; 459():79-85. PubMed ID: 26263498 [TBL] [Abstract][Full Text] [Related]
13. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. Thomas RG; Moon MJ; Lee H; Sasikala AR; Kim CS; Park IK; Jeong YY Carbohydr Polym; 2015 Oct; 131():439-46. PubMed ID: 26256205 [TBL] [Abstract][Full Text] [Related]
15. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles. Allam AA; Sadat ME; Potter SJ; Mast DB; Mohamed DF; Habib FS; Pauletti GM Nanoscale Res Lett; 2013 Oct; 8(1):426. PubMed ID: 24134544 [TBL] [Abstract][Full Text] [Related]
16. Lipid-coated superparamagnetic nanoparticles for thermoresponsive cancer treatment. Allam AA; Potter SJ; Bud'ko SL; Shi D; Mohamed DF; Habib FS; Pauletti GM Int J Pharm; 2018 Sep; 548(1):297-304. PubMed ID: 29981895 [TBL] [Abstract][Full Text] [Related]
17. Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies. Kumar R; Chauhan A; Jha SK; Kuanr BK J Mater Chem B; 2018 Sep; 6(33):5385-5399. PubMed ID: 32254502 [TBL] [Abstract][Full Text] [Related]
18. Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent. Patil-Sen Y; Torino E; De Sarno F; Ponsiglione AM; Chhabria V; Ahmed W; Mercer T Nanotechnology; 2020 Sep; 31(37):375102. PubMed ID: 32392545 [TBL] [Abstract][Full Text] [Related]
19. Ion-Mobility-Based Quantification of Surface-Coating-Dependent Binding of Serum Albumin to Superparamagnetic Iron Oxide Nanoparticles. Jeon S; Oberreit DR; Van Schooneveld G; Gao Z; Bischof JC; Haynes CL; Hogan CJ ACS Appl Mater Interfaces; 2016 Sep; 8(37):24482-90. PubMed ID: 27580340 [TBL] [Abstract][Full Text] [Related]
20. Luteinizing hormone-releasing hormone targeted superparamagnetic gold nanoshells for a combination therapy of hyperthermia and controlled drug delivery. Mohammad F; Al-Lohedan HA Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():692-700. PubMed ID: 28482580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]