These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34578767)

  • 1. Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis.
    Zhang Y; Ma D; Gu Z; Zhan L; Sha J
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction.
    Goto Y; Yanagi I; Matsui K; Yokoi T; Takeda K
    Sci Rep; 2016 Aug; 6():31324. PubMed ID: 27499264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond nanopore sizing: improving solid-state single-molecule sensing performance, lifetime, and analyte scope for omics by targeting surface chemistry during fabrication.
    D Y Bandara YMN; Saharia J; Karawdeniya BI; Hagan JT; Dwyer JR; Kim MJ
    Nanotechnology; 2020 Aug; 31(33):335707. PubMed ID: 32357346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Area Four-Channel Controlled Dielectric Breakdown System Design for Point-of-Care Applications.
    Hong J; Oh Y; Choi H; Kim J
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown.
    Saharia J; Bandara YMNDY; Karawdeniya BI; Alexandrakis G; Kim MJ
    Electrophoresis; 2021 Apr; 42(7-8):899-909. PubMed ID: 33340118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of DNA Through Solid-state Nanopores Fabricated by Controlled Dielectric Breakdown.
    Fujinami Tanimoto IM; Zhang J; Cressiot B; Le Pioufle B; Bacri L; Pelta J
    Chem Asian J; 2022 Dec; 17(24):e202200888. PubMed ID: 36321866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple Fabrication of Solid-State Nanopores on a Carbon Film.
    Takai N; Shoji K; Maki T; Kawano R
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Biomolecules Using Solid-State Nanopores Fabricated by Controlled Dielectric Breakdown.
    Cheng P; Zhao C; Pan Q; Xiong Z; Chen Q; Miao X; He Y
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore Fabrication via Transient High Electric Field Controlled Breakdown and Detection of Single RNA Molecules.
    Yin B; Fang S; Zhou D; Liang L; Wang L; Wang Z; Wang D; Yuan J
    ACS Appl Bio Mater; 2020 Sep; 3(9):6368-6375. PubMed ID: 35021767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore.
    Roshan KA; Tang Z; Guan W
    Nanotechnology; 2019 Mar; 30(9):095502. PubMed ID: 30523901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides.
    Goto Y; Matsui K; Yanagi I; Takeda KI
    Nanoscale; 2019 Aug; 11(30):14426-14433. PubMed ID: 31334729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically Functionalizing Controlled Dielectric Breakdown Silicon Nitride Nanopores by Direct Photohydrosilylation.
    Bandara YMNDY; Karawdeniya BI; Hagan JT; Chevalier RB; Dwyer JR
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30411-30420. PubMed ID: 31347369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore.
    Liu Q; Wu H; Wu L; Xie X; Kong J; Ye X; Liu L
    PLoS One; 2012; 7(9):e46014. PubMed ID: 23029365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown.
    Pud S; Verschueren D; Vukovic N; Plesa C; Jonsson MP; Dekker C
    Nano Lett; 2015 Oct; 15(10):7112-7. PubMed ID: 26333767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.