These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 34579374)
1. Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh. Stagg CL; Osland MJ; Moon JA; Feher LC; Laurenzano C; Lane TC; Jones WR; Hartley SB Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579374 [TBL] [Abstract][Full Text] [Related]
2. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Charles H; Dukes JS Ecol Appl; 2009 Oct; 19(7):1758-73. PubMed ID: 19831068 [TBL] [Abstract][Full Text] [Related]
4. Quantifying hydrologic controls on local- and landscape-scale indicators of coastal wetland loss. Stagg CL; Osland MJ; Moon JA; Hall CT; Feher LC; Jones WR; Couvillion BR; Hartley SB; Vervaeke WC Ann Bot; 2020 Feb; 125(2):365-376. PubMed ID: 31532484 [TBL] [Abstract][Full Text] [Related]
5. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network. Osland MJ; Griffith KT; Larriviere JC; Feher LC; Cahoon DR; Enwright NM; Oster DA; Tirpak JM; Woodrey MS; Collini RC; Baustian JJ; Breithaupt JL; Cherry JA; Conrad JR; Cormier N; Coronado-Molina CA; Donoghue JF; Graham SA; Harper JW; Hester MW; Howard RJ; Krauss KW; Kroes DE; Lane RR; McKee KL; Mendelssohn IA; Middleton BA; Moon JA; Piazza SC; Rankin NM; Sklar FH; Steyer GD; Swanson KM; Swarzenski CM; Vervaeke WC; Willis JM; Wilson KV PLoS One; 2017; 12(9):e0183431. PubMed ID: 28902904 [TBL] [Abstract][Full Text] [Related]
6. Climate and plant controls on soil organic matter in coastal wetlands. Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880 [TBL] [Abstract][Full Text] [Related]
7. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? McKee KL; Vervaeke WC Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820 [TBL] [Abstract][Full Text] [Related]
8. Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh. Valiela I; Chenoweth K; Lloret J; Teal J; Howes B; Goehringer Toner D Sci Total Environ; 2023 Apr; 867():161546. PubMed ID: 36634783 [TBL] [Abstract][Full Text] [Related]
9. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England. Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627 [TBL] [Abstract][Full Text] [Related]
10. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Xia S; Wang W; Song Z; Kuzyakov Y; Guo L; Van Zwieten L; Li Q; Hartley IP; Yang Y; Wang Y; Andrew Quine T; Liu C; Wang H Glob Chang Biol; 2021 Apr; 27(8):1627-1644. PubMed ID: 33432697 [TBL] [Abstract][Full Text] [Related]
11. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation. Middleton BA Am J Bot; 2016 Aug; 103(8):1420-35. PubMed ID: 27539261 [TBL] [Abstract][Full Text] [Related]
12. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159 [TBL] [Abstract][Full Text] [Related]
13. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Walters DC; Kirwan ML Ecol Evol; 2016 May; 6(9):2948-56. PubMed ID: 27069590 [TBL] [Abstract][Full Text] [Related]
14. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Guo H; Zhang Y; Lan Z; Pennings SC Glob Chang Biol; 2013 Sep; 19(9):2765-74. PubMed ID: 23580161 [TBL] [Abstract][Full Text] [Related]
15. Toward a mechanistic understanding of "peat collapse" and its potential contribution to coastal wetland loss. Chambers LG; Steinmuller HE; Breithaupt JL Ecology; 2019 Jul; 100(7):e02720. PubMed ID: 30933312 [TBL] [Abstract][Full Text] [Related]
16. Vegetation dieback in the Mississippi River Delta triggered by acute drought and chronic relative sea-level rise. Elsey-Quirk T; Lynn A; Jacobs MD; Diaz R; Cronin JT; Wang L; Huang H; Justic D Nat Commun; 2024 Apr; 15(1):3518. PubMed ID: 38664477 [TBL] [Abstract][Full Text] [Related]
17. Invasion patterns of Spartina alterniflora: Response of clones and seedlings to flooding and salinity-A case study in the Yellow River Delta, China. Pang B; Xie T; Ning Z; Cui B; Zhang H; Wang X; Gao F; Zhang S; Lu Y Sci Total Environ; 2023 Jun; 877():162803. PubMed ID: 36914127 [TBL] [Abstract][Full Text] [Related]
18. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill. Engel AS; Liu C; Paterson AT; Anderson LC; Turner RE; Overton EB Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778895 [TBL] [Abstract][Full Text] [Related]
19. A Tripartite Interaction Between Spartina alterniflora, Fusarium palustre, and the Purple Marsh Crab (Sesarma reticulatum) Contributes to Sudden Vegetation Dieback of Salt Marshes in New England. Elmer WH Phytopathology; 2014 Oct; 104(10):1070-7. PubMed ID: 24679153 [TBL] [Abstract][Full Text] [Related]
20. Vegetation zones as indicators of denitrification potential in salt marshes. Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]