BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34579577)

  • 1. Efficient Terpene Production by Marine Thraustochytrids: Shedding Light on the Thermodynamic Driving Force.
    Kulagina N; Perrin J; Besseau S; Courdavault V
    mBio; 2021 Oct; 12(5):e0197621. PubMed ID: 34579577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP Drives Efficient Terpene Biosynthesis in Marine Thraustochytrids.
    Zhang A; Mernitz K; Wu C; Xiong W; He Y; Wang G; Wang X
    mBio; 2021 Jun; 12(3):e0088121. PubMed ID: 34182781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Squalene Production by Constitutive Expression of the 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Aurantiochytrium sp. 18W-13a.
    Yang T; Juntila DJ; Fujihara N; Inada T; Yoneda K; Suzuki I
    Mar Biotechnol (NY); 2022 Aug; 24(4):733-743. PubMed ID: 35841466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production.
    Nakazawa A; Matsuura H; Kose R; Kato S; Honda D; Inouye I; Kaya K; Watanabe MM
    Bioresour Technol; 2012 Apr; 109():287-91. PubMed ID: 22023965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel squalene-producing thraustochytrids found in mangrove water.
    Otagiri M; Khalid A; Moriya S; Osada H; Takahashi S
    Biosci Biotechnol Biochem; 2017 Oct; 81(10):2034-2037. PubMed ID: 28795620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene.
    Kaya K; Nakazawa A; Matsuura H; Honda D; Inouye I; Watanabe MM
    Biosci Biotechnol Biochem; 2011; 75(11):2246-8. PubMed ID: 22056449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes.
    Zhang A; Xie Y; He Y; Wang W; Sen B; Wang G
    Bioresour Technol; 2019 Sep; 287():121415. PubMed ID: 31078814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic regulation and fermentation strategy for squalene production in Schizochytrium sp.
    Yang Q; Xie Z; Zheng X; Li K; Lu T; Lu Y; Chen C; Ling X
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2415-2431. PubMed ID: 35352151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.
    Aasen IM; Ertesvåg H; Heggeset TM; Liu B; Brautaset T; Vadstein O; Ellingsen TE
    Appl Microbiol Biotechnol; 2016 May; 100(10):4309-21. PubMed ID: 27041691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-production of DHA and squalene by thraustochytrid from forest biomass.
    Patel A; Liefeldt S; Rova U; Christakopoulos P; Matsakas L
    Sci Rep; 2020 Feb; 10(1):1992. PubMed ID: 32029800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Molecular Characterization of Squalene Synthase Belonging to the Marine Thraustochytrid Species
    Vyas S; Bettiga M; Rova U; Christakopoulos P; Matsakas L; Patel A
    Mar Drugs; 2022 Feb; 20(3):. PubMed ID: 35323479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprocess conditions and regulation factors to optimize squalene production in thraustochytrids.
    Fracchia-Durán AG; Ramos-Zambrano E; Márquez-Rocha FJ; Martínez-Ayala AL
    World J Microbiol Biotechnol; 2023 Jul; 39(9):251. PubMed ID: 37442840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining terpenoids production and biosynthetic pathway in thraustochytrids.
    Xie Y; Sen B; Wang G
    Bioresour Technol; 2017 Nov; 244(Pt 2):1269-1280. PubMed ID: 28549813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering for the microbial production of marine bioactive compounds.
    Mao X; Liu Z; Sun J; Lee SY
    Biotechnol Adv; 2017 Dec; 35(8):1004-1021. PubMed ID: 28279699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-quality genome-scale metabolic model of Aurantiochytrium sp. T66.
    Simensen V; Voigt A; Almaas E
    Biotechnol Bioeng; 2021 May; 118(5):2105-2117. PubMed ID: 33624839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of High Carotenoid-producing Aurantiochytrium sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information.
    Watanabe K; Arafiles KHV; Higashi R; Okamura Y; Tajima T; Matsumura Y; Nakashimada Y; Matsuyama K; Aki T
    J Oleo Sci; 2018 May; 67(5):571-578. PubMed ID: 29628484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate.
    Patel A; Rova U; Christakopoulos P; Matsakas L
    Sci Total Environ; 2020 Sep; 736():139691. PubMed ID: 32497881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats.
    Singh P; Liu Y; Li L; Wang G
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5789-805. PubMed ID: 24805845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae.
    Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS
    Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous production of DHA and squalene from
    Patel A; Rova U; Christakopoulos P; Matsakas L
    Biotechnol Biofuels; 2019; 12():255. PubMed ID: 31687043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.