These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34579599)
1. Environmental impact comparison of wheat straw fast pyrolysis systems with different hydrogen production processes based on life cycle assessment. Zheng X; Zhong Z; Zhang B; Du H; Wang W; Li Q Waste Manag Res; 2022 Jun; 40(6):654-664. PubMed ID: 34579599 [TBL] [Abstract][Full Text] [Related]
2. Life cycle assessment of bio-based levoglucosan production from cotton straw through fast pyrolysis. Wang J; You S; Lu Z; Chen R; Xu F Bioresour Technol; 2020 Jul; 307():123179. PubMed ID: 32222688 [TBL] [Abstract][Full Text] [Related]
3. Life cycle environmental sustainability and cumulative energy assessment of biomass pellets biofuel derived from agroforest residues. Rashedi A; Gul N; Hussain M; Hadi R; Khan N; Nadeem SG; Khanam T; Asyraf MRM; Kumar V PLoS One; 2022; 17(10):e0275005. PubMed ID: 36206274 [TBL] [Abstract][Full Text] [Related]
4. A life cycle assessment of options for producing synthetic fuel via pyrolysis. Vienescu DN; Wang J; Le Gresley A; Nixon JD Bioresour Technol; 2018 Feb; 249():626-634. PubMed ID: 29091847 [TBL] [Abstract][Full Text] [Related]
5. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass. Wong A; Zhang H; Kumar A Water Res; 2016 Oct; 102():330-345. PubMed ID: 27379729 [TBL] [Abstract][Full Text] [Related]
6. Environmental evaluation of a distributed-centralized biomass pyrolysis system: A case study in Shandong, China. Yang X; Han D; Zhao Y; Li R; Wu Y Sci Total Environ; 2020 May; 716():136915. PubMed ID: 32036128 [TBL] [Abstract][Full Text] [Related]
7. Sustainable valorization of macroalgae residual biomass, optimization of pyrolysis parameters and life cycle assessment. Alam SN; Singh B; Guldhe A; Raghuvanshi S; Sangwan KS Sci Total Environ; 2024 Apr; 919():170797. PubMed ID: 38342457 [TBL] [Abstract][Full Text] [Related]
8. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442 [TBL] [Abstract][Full Text] [Related]
9. Large-scale biohydrogen production from bio-oil. Sarkar S; Kumar A Bioresour Technol; 2010 Oct; 101(19):7350-61. PubMed ID: 20452203 [TBL] [Abstract][Full Text] [Related]
10. Dynamic life-cycle carbon analysis for fast pyrolysis biofuel produced from pine residues: implications of carbon temporal effects. Lan K; Ou L; Park S; Kelley SS; Nepal P; Kwon H; Cai H; Yao Y Biotechnol Biofuels; 2021 Sep; 14(1):191. PubMed ID: 34587989 [TBL] [Abstract][Full Text] [Related]
11. Life Cycle Assessment of Plywood Manufacturing Process in China. Jia L; Chu J; Ma L; Qi X; Kumar A Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31181714 [TBL] [Abstract][Full Text] [Related]
12. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood. Masum FH; Zaimes GG; Tan ECD; Li S; Dutta A; Ramasamy KK; Hawkins TR Environ Sci Technol; 2023 Aug; 57(34):12701-12712. PubMed ID: 37590157 [TBL] [Abstract][Full Text] [Related]
13. Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. Vuppaladadiyam AK; Vuppaladadiyam SSV; Sahoo A; Murugavelh S; Anthony E; Bhaskar T; Zheng Y; Zhao M; Duan H; Zhao Y; Antunes E; Sarmah AK; Leu SY Sci Total Environ; 2023 Jan; 857(Pt 1):159155. PubMed ID: 36206897 [TBL] [Abstract][Full Text] [Related]
14. [Life Cycle Assessment and Key Parameter Comparison of Hydrogen Fuel Cell Vehicles Power Systems]. Chen YS; Lan LB; Hao Z; Fu P Huan Jing Ke Xue; 2022 Aug; 43(8):4402-4412. PubMed ID: 35971737 [TBL] [Abstract][Full Text] [Related]
15. Global Life Cycle and Techno-Economic Assessment of Algal-Based Biofuels. Quiroz D; Greene JM; Limb BJ; Quinn JC Environ Sci Technol; 2023 Aug; 57(31):11541-11551. PubMed ID: 37499260 [TBL] [Abstract][Full Text] [Related]
16. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637 [TBL] [Abstract][Full Text] [Related]
17. Life cycle assessment of first-generation biofuels using a nitrogen crop model. Gallejones P; Pardo G; Aizpurua A; del Prado A Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117 [TBL] [Abstract][Full Text] [Related]
18. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor. Wu Q; Wang Y; Jiang L; Yang Q; Ke L; Peng Y; Yang S; Dai L; Liu Y; Ruan R Bioresour Technol; 2020 Mar; 299():122611. PubMed ID: 31874451 [TBL] [Abstract][Full Text] [Related]
19. Environmental life cycle assessment of monosodium glutamate production in China: Based on the progress of cleaner production in recent ten years. Ding J; Hu X; Feng Z; Dong L Sci Total Environ; 2022 Apr; 818():151706. PubMed ID: 34800459 [TBL] [Abstract][Full Text] [Related]
20. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil-Process Design and Life-Cycle Assessment. Sundaram S; Kolb G; Hessel V; Wang Q Ind Eng Chem Res; 2017 Mar; 56(12):3373-3387. PubMed ID: 28405056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]