These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Distinct roles of neuroligin-1 and SynCAM1 in synapse formation and function in primary hippocampal neuronal cultures. Burton SD; Johnson JW; Zeringue HC; Meriney SD Neuroscience; 2012 Jul; 215():1-16. PubMed ID: 22542674 [TBL] [Abstract][Full Text] [Related]
3. Selective capability of SynCAM and neuroligin for functional synapse assembly. Sara Y; Biederer T; Atasoy D; Chubykin A; Mozhayeva MG; Südhof TC; Kavalali ET J Neurosci; 2005 Jan; 25(1):260-70. PubMed ID: 15634790 [TBL] [Abstract][Full Text] [Related]
4. Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties. Chanda S; Hale WD; Zhang B; Wernig M; Südhof TC J Neurosci; 2017 Jul; 37(29):6816-6836. PubMed ID: 28607166 [TBL] [Abstract][Full Text] [Related]
5. Brain-derived neurotrophic factor controls activity-dependent maturation of CA1 synapses by downregulating tonic activation of presynaptic kainate receptors. Sallert M; Rantamäki T; Vesikansa A; Anthoni H; Harju K; Yli-Kauhaluoma J; Taira T; Castren E; Lauri SE J Neurosci; 2009 Sep; 29(36):11294-303. PubMed ID: 19741136 [TBL] [Abstract][Full Text] [Related]
6. SPARCL1 Promotes Excitatory But Not Inhibitory Synapse Formation and Function Independent of Neurexins and Neuroligins. Gan KJ; Südhof TC J Neurosci; 2020 Oct; 40(42):8088-8102. PubMed ID: 32973045 [TBL] [Abstract][Full Text] [Related]
7. Specific trans-synaptic interaction with inhibitory interneuronal neurexin underlies differential ability of neuroligins to induce functional inhibitory synapses. Futai K; Doty CD; Baek B; Ryu J; Sheng M J Neurosci; 2013 Feb; 33(8):3612-23. PubMed ID: 23426688 [TBL] [Abstract][Full Text] [Related]
8. Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Stan A; Pielarski KN; Brigadski T; Wittenmayer N; Fedorchenko O; Gohla A; Lessmann V; Dresbach T; Gottmann K Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11116-21. PubMed ID: 20534458 [TBL] [Abstract][Full Text] [Related]
9. Interaction of amyloid-β (Aβ) oligomers with neurexin 2α and neuroligin 1 mediates synapse damage and memory loss in mice. Brito-Moreira J; Lourenco MV; Oliveira MM; Ribeiro FC; Ledo JH; Diniz LP; Vital JFS; Magdesian MH; Melo HM; Barros-Aragão F; de Souza JM; Alves-Leon SV; Gomes FCA; Clarke JR; Figueiredo CP; De Felice FG; Ferreira ST J Biol Chem; 2017 May; 292(18):7327-7337. PubMed ID: 28283575 [TBL] [Abstract][Full Text] [Related]
10. Modulation of unitary glutamatergic synapses by neurotrophin-4/5 or brain-derived neurotrophic factor in hippocampal microcultures: presynaptic enhancement depends on pre-established paired-pulse facilitation. Lessmann V; Heumann R Neuroscience; 1998 Sep; 86(2):399-413. PubMed ID: 9881855 [TBL] [Abstract][Full Text] [Related]
11. Aspects of excitatory/inhibitory synapses in multiple brain regions are correlated with levels of brain-derived neurotrophic factor/neurotrophin-3. Shinoda Y; Sadakata T; Yagishita K; Kinameri E; Katoh-Semba R; Sano Y; Furuichi T Biochem Biophys Res Commun; 2019 Feb; 509(2):429-434. PubMed ID: 30594389 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. Dahlhaus R; Hines RM; Eadie BD; Kannangara TS; Hines DJ; Brown CE; Christie BR; El-Husseini A Hippocampus; 2010 Feb; 20(2):305-22. PubMed ID: 19437420 [TBL] [Abstract][Full Text] [Related]
13. Modeling a Neurexin-3α Human Mutation in Mouse Neurons Identifies a Novel Role in the Regulation of Transsynaptic Signaling and Neurotransmitter Release at Excitatory Synapses. Restrepo S; Langer NJ; Nelson KA; Aoto J J Neurosci; 2019 Nov; 39(46):9065-9082. PubMed ID: 31578233 [TBL] [Abstract][Full Text] [Related]
14. Neuroligin-1 Knockdown Suppresses Seizure Activity by Regulating Neuronal Hyperexcitability. Fang M; Wei JL; Tang B; Liu J; Chen L; Tang ZH; Luo J; Chen GJ; Wang XF Mol Neurobiol; 2016 Jan; 53(1):270-284. PubMed ID: 25428619 [TBL] [Abstract][Full Text] [Related]
15. Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons. Singh B; Henneberger C; Betances D; Arevalo MA; Rodríguez-Tébar A; Meier JC; Grantyn R J Neurosci; 2006 Jul; 26(27):7189-200. PubMed ID: 16822976 [TBL] [Abstract][Full Text] [Related]
16. Silencing of neuroligin function by postsynaptic neurexins. Taniguchi H; Gollan L; Scholl FG; Mahadomrongkul V; Dobler E; Limthong N; Peck M; Aoki C; Scheiffele P J Neurosci; 2007 Mar; 27(11):2815-24. PubMed ID: 17360903 [TBL] [Abstract][Full Text] [Related]
17. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. Su B; Ji YS; Sun XL; Liu XH; Chen ZY J Biol Chem; 2014 Jan; 289(3):1213-26. PubMed ID: 24302729 [TBL] [Abstract][Full Text] [Related]
18. Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus. Gottschalk W; Pozzo-Miller LD; Figurov A; Lu B J Neurosci; 1998 Sep; 18(17):6830-9. PubMed ID: 9712654 [TBL] [Abstract][Full Text] [Related]
19. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. Madara JC; Levine ES J Neurophysiol; 2008 Dec; 100(6):3175-84. PubMed ID: 18922945 [TBL] [Abstract][Full Text] [Related]
20. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. Tyler WJ; Pozzo-Miller LD J Neurosci; 2001 Jun; 21(12):4249-58. PubMed ID: 11404410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]