These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 34579879)
1. Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate. Shen Z; Cao Y; Li M; Yan Y; Cheng R; Zhao Y; Shao Q; Wang J; Sang S Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112360. PubMed ID: 34579879 [TBL] [Abstract][Full Text] [Related]
2. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair. Zhang X; Yan Z; Guan G; Lu Z; Yan S; Du A; Wang L; Li Q J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703 [TBL] [Abstract][Full Text] [Related]
3. Constructing epidermal rete ridges using a composite hydrogel to enhance multiple signaling pathways for the maintenance of epidermal stem cell niche. Shen Z; Liu Z; Sun L; Li M; Han L; Wang J; Wu X; Sang S Acta Biomater; 2023 Oct; 169():273-288. PubMed ID: 37516415 [TBL] [Abstract][Full Text] [Related]
4. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration. Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082 [TBL] [Abstract][Full Text] [Related]
5. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa. Vila A; Torras N; Castaño AG; García-Díaz M; Comelles J; Pérez-Berezo T; Corregidor C; Castaño Ó; Engel E; Fernández-Majada V; Martínez E Biofabrication; 2020 Feb; 12(2):025008. PubMed ID: 31805546 [TBL] [Abstract][Full Text] [Related]
6. Adjusting the accuracy of PEGDA-GelMA vascular network by dark pigments via digital light processing printing. Sheng L; Li M; Zheng S; Qi J J Biomater Appl; 2022 Feb; 36(7):1173-1187. PubMed ID: 34738507 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
9. Methacrylated pullulan/polyethylene (glycol) diacrylate composite hydrogel for cartilage tissue engineering. Qin X; He R; Chen H; Fu D; Peng Y; Meng S; Chen C; Yang L J Biomater Sci Polym Ed; 2021 Jun; 32(8):1057-1071. PubMed ID: 33685369 [TBL] [Abstract][Full Text] [Related]
10. Investigating PEGDA and GelMA Microgel Models for Sustained 3D Heterotypic Dermal Papilla and Keratinocyte Co-Cultures. Tan JJY; Nguyen DV; Common JE; Wu C; Ho PCL; Kang L Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670029 [TBL] [Abstract][Full Text] [Related]
11. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370 [TBL] [Abstract][Full Text] [Related]
12. Biofabrication of biomimetic undulating microtopography at the dermal-epidermal junction and its effects on the growth and differentiation of epidermal cells. Gao C; Lu C; Liu H; Zhang Y; Qiao H; Jin A; Dai Q; Liu Y Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38306682 [TBL] [Abstract][Full Text] [Related]
13. A GelMA-PEGDA-nHA Composite Hydrogel for Bone Tissue Engineering. Wang Y; Cao X; Ma M; Lu W; Zhang B; Guo Y Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847000 [TBL] [Abstract][Full Text] [Related]
14. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Zhao X; Lang Q; Yildirimer L; Lin ZY; Cui W; Annabi N; Ng KW; Dokmeci MR; Ghaemmaghami AM; Khademhosseini A Adv Healthc Mater; 2016 Jan; 5(1):108-18. PubMed ID: 25880725 [TBL] [Abstract][Full Text] [Related]
15. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Fu Y; Xu K; Zheng X; Giacomin AJ; Mix AW; Kao WJ Biomaterials; 2012 Jan; 33(1):48-58. PubMed ID: 21955690 [TBL] [Abstract][Full Text] [Related]
16. Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels. Kim S; Choi Y; Lee W; Kim K Tissue Eng Regen Med; 2022 Apr; 19(2):309-319. PubMed ID: 34905183 [TBL] [Abstract][Full Text] [Related]
17. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion. Peter M; Singh A; Mohankumar K; Jeenger R; Joge PA; Gatne MM; Tayalia P ACS Appl Bio Mater; 2019 Feb; 2(2):916-929. PubMed ID: 35016295 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
20. Development of a Photo-Crosslinking, Biodegradable GelMA/PEGDA Hydrogel for Guided Bone Regeneration Materials. Wang Y; Ma M; Wang J; Zhang W; Lu W; Gao Y; Zhang B; Guo Y Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30081450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]