These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34579889)
1. Gellan gum-gelatin viscoelastic hydrogels as scaffolds to promote fibroblast differentiation. Xu Z; Zhang L; Bentil SA; Bratlie KM Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112370. PubMed ID: 34579889 [TBL] [Abstract][Full Text] [Related]
2. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Nguyen HD; Lin CC Acta Biomater; 2024 Mar; 177():203-215. PubMed ID: 38354874 [TBL] [Abstract][Full Text] [Related]
3. Colloidal hydrogels made of gelatin nanoparticles exhibit fast stress relaxation at strains relevant for cell activity. Bertsch P; Andrée L; Besheli NH; Leeuwenburgh SCG Acta Biomater; 2022 Jan; 138():124-132. PubMed ID: 34740854 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering. Maia FR; Musson DS; Naot D; da Silva LP; Bastos AR; Costa JB; Oliveira JM; Correlo VM; Reis RL; Cornish J Biomed Mater; 2018 Mar; 13(3):035012. PubMed ID: 29442071 [TBL] [Abstract][Full Text] [Related]
5. Sustainable, flexible and biocompatible hydrogels derived from microbial polysaccharides with tailorable structures for tissue engineering. Qi X; Su T; Zhang M; Tong X; Pan W; Zeng Q; Shen J Carbohydr Polym; 2020 Jun; 237():116160. PubMed ID: 32241445 [TBL] [Abstract][Full Text] [Related]
6. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297 [TBL] [Abstract][Full Text] [Related]
7. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats. Jwo SC; Chiu CH; Tang SJ; Hsieh MF Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182 [TBL] [Abstract][Full Text] [Related]
9. Mechanically tuned 3 dimensional hydrogels support human mammary fibroblast growth and viability. Woods K; Thigpen C; Wang JP; Park H; Hielscher A BMC Cell Biol; 2017 Dec; 18(1):35. PubMed ID: 29246104 [TBL] [Abstract][Full Text] [Related]
10. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Oliveira MB; Custódio CA; Gasperini L; Reis RL; Mano JF Acta Biomater; 2016 Sep; 41():119-32. PubMed ID: 27233132 [TBL] [Abstract][Full Text] [Related]
11. Design of modular gellan gum hydrogel functionalized with avidin and biotinylated adhesive ligands for cell culture applications. Gering C; Koivisto JT; Parraga J; Leppiniemi J; Vuornos K; Hytönen VP; Miettinen S; Kellomäki M PLoS One; 2019; 14(8):e0221931. PubMed ID: 31469884 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related]
13. Stress-relaxing double-network hydrogel for chondrogenic differentiation of stem cells. Li W; Wu D; Hu D; Zhu S; Pan C; Jiao Y; Li L; Luo B; Zhou C; Lu L Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110333. PubMed ID: 31761202 [TBL] [Abstract][Full Text] [Related]
15. Fibroblasts treated with macrophage conditioned medium results in phenotypic shifts and changes in collagen organization. Li Z; Bratlie KM Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111915. PubMed ID: 33641908 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of site selective photo-crosslinkable glycidyl methacrylate functionalized gelatin-based 3D hydrogel scaffold for liver tissue engineering. Sk MM; Das P; Panwar A; Tan LP Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111694. PubMed ID: 33812568 [TBL] [Abstract][Full Text] [Related]
19. Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Bonifacio MA; Gentile P; Ferreira AM; Cometa S; De Giglio E Carbohydr Polym; 2017 May; 163():280-291. PubMed ID: 28267508 [TBL] [Abstract][Full Text] [Related]
20. Improved vasculogenesis and bone matrix formation through coculture of endothelial cells and stem cells in tissue-specific methacryloyl gelatin-based hydrogels. Wenz A; Tjoeng I; Schneider I; Kluger PJ; Borchers K Biotechnol Bioeng; 2018 Oct; 115(10):2643-2653. PubMed ID: 29981277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]