These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34579979)

  • 1. Animal migration to northern latitudes: environmental changes and increasing threats.
    Kubelka V; Sandercock BK; Székely T; Freckleton RP
    Trends Ecol Evol; 2022 Jan; 37(1):30-41. PubMed ID: 34579979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower predation risk for migratory birds at high latitudes.
    McKinnon L; Smith PA; Nol E; Martin JL; Doyle FI; Abraham KF; Gilchrist HG; Morrison RI; Bêty J
    Science; 2010 Jan; 327(5963):326-7. PubMed ID: 20075251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high-arctic warming.
    Layton-Matthews K; Hansen BB; Grøtan V; Fuglei E; Loonen MJJE
    Glob Chang Biol; 2020 Feb; 26(2):642-657. PubMed ID: 31436007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arctic Geese Tune Migration to a Warming Climate but Still Suffer from a Phenological Mismatch.
    Lameris TK; van der Jeugd HP; Eichhorn G; Dokter AM; Bouten W; Boom MP; Litvin KE; Ens BJ; Nolet BA
    Curr Biol; 2018 Aug; 28(15):2467-2473.e4. PubMed ID: 30033332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced autumn migration of sparrowhawk has increased the predation risk of long-distance migrants in Finland.
    Lehikoinen A
    PLoS One; 2011; 6(5):e20001. PubMed ID: 21625604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed herbivory by migratory geese increases summer-long CO
    Leffler AJ; Beard KH; Kelsey KC; Choi RT; Schmutz JA; Welker JM
    Glob Chang Biol; 2019 Jan; 25(1):277-289. PubMed ID: 30295398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.
    Descamps S; Aars J; Fuglei E; Kovacs KM; Lydersen C; Pavlova O; Pedersen ÅØ; Ravolainen V; Strøm H
    Glob Chang Biol; 2017 Feb; 23(2):490-502. PubMed ID: 27250039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate.
    Kellermann JL; van Riper C
    Oecologia; 2015 Aug; 178(4):1227-38. PubMed ID: 25822114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.
    Borgmann KL; Conway CJ; Morrison ML
    PLoS One; 2013; 8(6):e65909. PubMed ID: 23776566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
    Ernakovich JG; Hopping KA; Berdanier AB; Simpson RT; Kachergis EJ; Steltzer H; Wallenstein MD
    Glob Chang Biol; 2014 Oct; 20(10):3256-69. PubMed ID: 24599697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate Change in the North American Arctic: A One Health Perspective.
    Dudley JP; Hoberg EP; Jenkins EJ; Parkinson AJ
    Ecohealth; 2015 Dec; 12(4):713-25. PubMed ID: 26070525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of rising sea temperatures on an Arctic top predator, the narwhal.
    Chambault P; Tervo OM; Garde E; Hansen RG; Blackwell SB; Williams TM; Dietz R; Albertsen CM; Laidre KL; Nielsen NH; Richard P; Sinding MHS; Schmidt HC; Heide-Jørgensen MP
    Sci Rep; 2020 Oct; 10(1):18678. PubMed ID: 33122802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of migratory populations to phenological change: a Migratory Flow Network modelling approach.
    Taylor CM; Laughlin AJ; Hall RJ
    J Anim Ecol; 2016 May; 85(3):648-59. PubMed ID: 26782029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited increase in asynchrony between the onset of spring green-up and the arrival of a long-distance migratory bird.
    Fang B; Yang Z; Shen M; Wu X; Hu J
    Sci Total Environ; 2021 Nov; 795():148823. PubMed ID: 34229240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global change and ecosystem connectivity: How geese link fields of central Europe to eutrophication of Arctic freshwaters.
    Hessen DO; Tombre IM; van Geest G; Alfsnes K
    Ambio; 2017 Feb; 46(1):40-47. PubMed ID: 27352361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats.
    Both C; Van Turnhout CA; Bijlsma RG; Siepel H; Van Strien AJ; Foppen RP
    Proc Biol Sci; 2010 Apr; 277(1685):1259-66. PubMed ID: 20018784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responding to climate change: Adélie Penguins confront astronomical and ocean boundaries.
    Ballard G; Toniolo V; Ainley DG; Parkinson CL; Arrigo KR; Trathan PN
    Ecology; 2010 Jul; 91(7):2056-69. PubMed ID: 20715628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prey-predator phenological mismatch under climate change.
    Damien M; Tougeron K
    Curr Opin Insect Sci; 2019 Oct; 35():60-68. PubMed ID: 31401300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change and the ecology and evolution of Arctic vertebrates.
    Gilg O; Kovacs KM; Aars J; Fort J; Gauthier G; Grémillet D; Ims RA; Meltofte H; Moreau J; Post E; Schmidt NM; Yannic G; Bollache L
    Ann N Y Acad Sci; 2012 Feb; 1249():166-90. PubMed ID: 22329928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A link between water availability and nesting success mediated by predator-prey interactions in the Arctic.
    Lecomte N; Gauthier G; Giroux JF
    Ecology; 2009 Feb; 90(2):465-75. PubMed ID: 19323230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.