These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 34580493)

  • 81. Precise Temporal Regulation of Post-transcriptional Repressors Is Required for an Orderly Drosophila Maternal-to-Zygotic Transition.
    Cao WX; Kabelitz S; Gupta M; Yeung E; Lin S; Rammelt C; Ihling C; Pekovic F; Low TCH; Siddiqui NU; Cheng MHK; Angers S; Smibert CA; Wühr M; Wahle E; Lipshitz HD
    Cell Rep; 2020 Jun; 31(12):107783. PubMed ID: 32579915
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The establishment and interpretation of transcription factor gradients in the Drosophila embryo.
    Courey AJ; Huang JD
    Biochim Biophys Acta; 1995 Mar; 1261(1):1-18. PubMed ID: 7893745
    [No Abstract]   [Full Text] [Related]  

  • 83. H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex.
    Bowman SK; Deaton AM; Domingues H; Wang PI; Sadreyev RI; Kingston RE; Bender W
    Elife; 2014 Jul; 3():e02833. PubMed ID: 25082344
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Dhx34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish.
    Anastasaki C; Longman D; Capper A; Patton EE; Cáceres JF
    Nucleic Acids Res; 2011 May; 39(9):3686-94. PubMed ID: 21227923
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo.
    Deignan L; Pinheiro MT; Sutcliffe C; Saunders A; Wilcockson SG; Zeef LA; Donaldson IJ; Ashe HL
    PLoS Genet; 2016 Jul; 12(7):e1006164. PubMed ID: 27379389
    [TBL] [Abstract][Full Text] [Related]  

  • 86. In vivo stable isotope labeling of fruit flies reveals post-transcriptional regulation in the maternal-to-zygotic transition.
    Gouw JW; Pinkse MW; Vos HR; Moshkin Y; Verrijzer CP; Heck AJ; Krijgsveld J
    Mol Cell Proteomics; 2009 Jul; 8(7):1566-78. PubMed ID: 19321433
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Pegasus, the 'atypical' Ikaros family member, influences left-right asymmetry and regulates pitx2 expression.
    John LB; Trengove MC; Fraser FW; Yoong SH; Ward AC
    Dev Biol; 2013 May; 377(1):46-54. PubMed ID: 23499657
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Spatiotemporal expression of the cocaine- and amphetamine-regulated transcript-like (cart-like) gene during zebrafish embryogenesis.
    Kawahara A; Morita H; Yanagi K; Suzuki H; Mori T; Ohga R; Taimatsu K
    Gene Expr Patterns; 2018 Dec; 30():1-6. PubMed ID: 30125742
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Inter-embryo gene expression variability recapitulates the hourglass pattern of evo-devo.
    Liu J; Frochaux M; Gardeux V; Deplancke B; Robinson-Rechavi M
    BMC Biol; 2020 Sep; 18(1):129. PubMed ID: 32950053
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Developing S-phase control.
    Duronio RJ
    Genes Dev; 2012 Apr; 26(8):746-50. PubMed ID: 22508722
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Morphogenesis: Setting the pace of embryo folding.
    Clarke DN; Martin AC
    Curr Biol; 2024 Apr; 34(7):R286-R288. PubMed ID: 38593774
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Is developmental synchrony enabled by CTCF residence time?
    Wang HV; Corces VG
    Dev Cell; 2021 Sep; 56(18):2545-2546. PubMed ID: 34582771
    [TBL] [Abstract][Full Text] [Related]  

  • 93. 3'HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression.
    Himadewi P; Wang XQD; Feng F; Gore H; Liu Y; Yu L; Kurita R; Nakamura Y; Pfeifer GP; Liu J; Zhang X
    Elife; 2021 Sep; 10():. PubMed ID: 34585664
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The N-terminal dimerization domains of human and Drosophila CTCF have similar functionality.
    Kamalyan S; Kyrchanova O; Klimenko N; Babosha V; Vasileva Y; Belova E; Fursenko D; Maksimenko O; Georgiev P
    Epigenetics Chromatin; 2024 Apr; 17(1):9. PubMed ID: 38561749
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Mechanisms of enhancer-promoter communication and chromosomal architecture in mammals and
    Kyrchanova OV; Bylino OV; Georgiev PG
    Front Genet; 2022; 13():1081088. PubMed ID: 36531247
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Embryogenesis without CTCF in flies and vertebrates.
    Fudenberg G; Nora EP
    Nat Struct Mol Biol; 2021 Oct; 28(10):774-776. PubMed ID: 34580493
    [No Abstract]   [Full Text] [Related]  

  • 97. Permissive role of CTCF-Hoxb7a-Cdkn2a/b axis in the emergence of hematopoietic stem and progenitor cells during zebrafish embryogenesis.
    Zhang W; Liu X; Xue W; Gao L; Li D; Jing C; Zhao J; Pan W
    J Genet Genomics; 2024 Sep; 51(9):974-977. PubMed ID: 38852666
    [No Abstract]   [Full Text] [Related]  

  • 98. The Insulator Protein CTCF Is Required for Correct
    Gambetta MC; Furlong EEM
    Genetics; 2018 Sep; 210(1):129-136. PubMed ID: 30021792
    [TBL] [Abstract][Full Text] [Related]  

  • 99. CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression.
    Franke M; De la Calle-Mustienes E; Neto A; Almuedo-Castillo M; Irastorza-Azcarate I; Acemel RD; Tena JJ; Santos-Pereira JM; Gómez-Skarmeta JL
    Nat Commun; 2021 Sep; 12(1):5415. PubMed ID: 34518536
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Extracellular modulation of BMP activity in patterning the dorsoventral axis.
    Little SC; Mullins MC
    Birth Defects Res C Embryo Today; 2006 Sep; 78(3):224-42. PubMed ID: 17061292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.