BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34580937)

  • 21. Multifunctional hollow superhydrophobic SiO
    Guo F; Wen Q; Peng Y; Guo Z
    J Colloid Interface Sci; 2017 May; 494():54-63. PubMed ID: 28135628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Additive Manufacturing of Transparent Multi-Component Nanoporous Glasses.
    Li B; Li Z; Cooperstein I; Shan W; Wang S; Jiang B; Zhang L; Magdassi S; He J
    Adv Sci (Weinh); 2023 Dec; 10(35):e2305775. PubMed ID: 37870213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile preparation of high density polyethylene superhydrophobic/superoleophilic coatings on glass, copper and polyurethane sponge for self-cleaning, corrosion resistance and efficient oil/water separation.
    Cheng Y; Wu B; Ma X; Lu S; Xu W; Szunerits S; Boukherroub R
    J Colloid Interface Sci; 2018 Sep; 525():76-85. PubMed ID: 29684733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Durable and Flexible Superhydrophobic Materials: Abrasion/Scratching/Slicing/Droplet Impacting/Bending/Twisting-Tolerant Composite with Porcupinefish-Like Structure.
    Yamauchi Y; Tenjimbayashi M; Samitsu S; Naito M
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32381-32389. PubMed ID: 31429550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces.
    Xiu Y; Liu Y; Hess DW; Wong CP
    Nanotechnology; 2010 Apr; 21(15):155705. PubMed ID: 20332558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabricating low-cost, robust superhydrophobic coatings with re-entrant topology for self-cleaning, corrosion inhibition, and oil-water separation.
    Sow PK; Singhal R; Sahoo P; Radhakanth S
    J Colloid Interface Sci; 2021 Oct; 600():358-372. PubMed ID: 34023697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of robust superhydrophobic surfaces.
    Wang D; Sun Q; Hokkanen MJ; Zhang C; Lin FY; Liu Q; Zhu SP; Zhou T; Chang Q; He B; Zhou Q; Chen L; Wang Z; Ras RHA; Deng X
    Nature; 2020 Jun; 582(7810):55-59. PubMed ID: 32494077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-Printed Surface Architecture Enhancing Superhydrophobicity and Viscous Droplet Repellency.
    Graeber G; Martin Kieliger OB; Schutzius TM; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43275-43281. PubMed ID: 30452216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.
    Ye L; Guan J; Li Z; Zhao J; Ye C; You J; Li Y
    Langmuir; 2017 Feb; 33(6):1368-1374. PubMed ID: 28052672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superhydrophobic and Anti-Icing Coatings Made of Hierarchically Nanofibrillated Polymer Colloids.
    Williams AH; Roh S; Kotb Y; Velev OD
    Macromol Rapid Commun; 2022 Dec; 43(23):e2200513. PubMed ID: 35988012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass.
    Zhao S; Zhao J; Wen M; Yao M; Wang F; Huang F; Zhang Q; Cheng YB; Zhong J
    Langmuir; 2018 Sep; 34(38):11316-11324. PubMed ID: 30184434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface Modification of 3D Printed Microfluidic Devices for Controlled Wetting in Two-Phase Flow.
    Warr CA; Crawford NG; Nordin GP; Pitt WG
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-Fluorinated, Superhydrophobic Binder-Filler Coatings on Smooth Surfaces: Controlled Phase Separation of Particles to Enhance Mechanical Durability.
    Li C; Boban M; Beebe JM; Bhagwagar DE; Liu J; Tuteja A
    Langmuir; 2021 Mar; 37(10):3104-3112. PubMed ID: 33667094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation.
    Shang B; Wang Y; Peng B; Deng Z
    J Colloid Interface Sci; 2016 Nov; 482():240-251. PubMed ID: 27505277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in Bioinspired Superhydrophobic Surfaces Made from Silicones: Fabrication and Application.
    Li Z; Wang X; Bai H; Cao M
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery.
    Liu L; Pan Y; Bhushan B; Zhao X
    J Colloid Interface Sci; 2019 Mar; 538():25-33. PubMed ID: 30496893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.
    Su F; Yao K
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8762-70. PubMed ID: 24796223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties.
    Bagnol R; Sprecher C; Peroglio M; Chevalier J; Mahou R; Büchler P; Richards G; Eglin D
    Acta Biomater; 2021 Apr; 125():322-332. PubMed ID: 33631396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-Printed Materials for Wastewater Treatment.
    Roy Barman S; Gavit P; Chowdhury S; Chatterjee K; Nain A
    JACS Au; 2023 Nov; 3(11):2930-2947. PubMed ID: 38034974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.