These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34580937)

  • 41. Additive Manufacturing of Transparent Silica Glass from Solutions.
    Cooperstein I; Shukrun E; Press O; Kamyshny A; Magdassi S
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18879-18885. PubMed ID: 29741081
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces.
    Yan X; Huang Z; Sett S; Oh J; Cha H; Li L; Feng L; Wu Y; Zhao C; Orejon D; Chen F; Miljkovic N
    ACS Nano; 2019 Apr; 13(4):4160-4173. PubMed ID: 30933473
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanically durable superhydrophobic surfaces.
    Verho T; Bower C; Andrew P; Franssila S; Ikkala O; Ras RH
    Adv Mater; 2011 Feb; 23(5):673-8. PubMed ID: 21274919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Shape-Deformed Mushroom-like Reentrant Structures for Robust Liquid-Repellent Surfaces.
    Kim DH; Kim S; Park SR; Fang NX; Cho YT
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33618-33626. PubMed ID: 34196537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional printing of multicomponent glasses using phase-separating resins.
    Moore DG; Barbera L; Masania K; Studart AR
    Nat Mater; 2020 Feb; 19(2):212-217. PubMed ID: 31712744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile preparation of super durable superhydrophobic materials.
    Wu L; Zhang J; Li B; Fan L; Li L; Wang A
    J Colloid Interface Sci; 2014 Oct; 432():31-42. PubMed ID: 25069050
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization.
    Xue CH; Li YR; Zhang P; Ma JZ; Jia ST
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10153-61. PubMed ID: 24942304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer.
    van der Linden PJEM; Popov AM; Pontoni D
    Lab Chip; 2020 Nov; 20(22):4128-4140. PubMed ID: 33057528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications.
    Helmer D; Keller N; Kotz F; Stolz F; Greiner C; Nargang TM; Sachsenheimer K; Rapp BE
    Sci Rep; 2017 Nov; 7(1):15078. PubMed ID: 29118407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function.
    Wang H; He M; Liu H; Guan Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application.
    Guo Q; Ma J; Yin T; Jin H; Zheng J; Gao H
    Molecules; 2024 May; 29(9):. PubMed ID: 38731589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.
    Cao M; Luo X; Ren H; Feng J
    J Colloid Interface Sci; 2018 Feb; 512():567-574. PubMed ID: 29100161
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil-Water Separation.
    Gu J; Fan H; Li C; Caro J; Meng H
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5297-5301. PubMed ID: 30628149
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D printing of radioactive phantoms for nuclear medicine imaging.
    Läppchen T; Meier LP; Fürstner M; Prenosil GA; Krause T; Rominger A; Klaeser B; Hentschel M
    EJNMMI Phys; 2020 Apr; 7(1):22. PubMed ID: 32323035
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces.
    Lv LB; Cui TL; Zhang B; Wang HH; Li XH; Chen JS
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15165-9. PubMed ID: 26440454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.