These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 34581017)
1. Resveratrol-β-Lactoglobulin Composite Nanocoating by Layer-by-Layer Assembly with Fe(III)-Tannic Acid Complex. Cho YS; Kim S; Kim YK; Jin SG; Park JH Chem Asian J; 2021 Nov; 16(22):3636-3639. PubMed ID: 34581017 [TBL] [Abstract][Full Text] [Related]
2. Chemically Robust Antifog Nanocoating through Multilayer Deposition of Silica Composite Nanofilms. Kim S; Park JH ACS Appl Mater Interfaces; 2020 Sep; 12(37):42109-42118. PubMed ID: 32809787 [TBL] [Abstract][Full Text] [Related]
3. pH - Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. Pujara N; Giri R; Wong KY; Qu Z; Rewatkar P; Moniruzzaman M; Begun J; Ross BP; McGuckin M; Popat A J Colloid Interface Sci; 2021 May; 589():45-55. PubMed ID: 33450459 [TBL] [Abstract][Full Text] [Related]
4. Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives. Lau HH; Murney R; Yakovlev NL; Novoselova MV; Lim SH; Roy N; Singh H; Sukhorukov GB; Haigh B; Kiryukhin MV J Colloid Interface Sci; 2017 Nov; 505():332-340. PubMed ID: 28601742 [TBL] [Abstract][Full Text] [Related]
5. Oral Delivery of β-Lactoglobulin-Nanosphere-Encapsulated Resveratrol Alleviates Inflammation in Winnie Mice with Spontaneous Ulcerative Colitis. Pujara N; Wong KY; Qu Z; Wang R; Moniruzzaman M; Rewatkar P; Kumeria T; Ross BP; McGuckin M; Popat A Mol Pharm; 2021 Feb; 18(2):627-640. PubMed ID: 32437160 [TBL] [Abstract][Full Text] [Related]
6. Enzymes@ZIF-8 Nanocomposites with Protection Nanocoating: Stability and Acid-Resistant Evaluation. Feng Y; Zhong L; Bilal M; Tan Z; Hou Y; Jia S; Cui J Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960011 [TBL] [Abstract][Full Text] [Related]
7. Iron-Chelating Hydroxyketone Ligands Promote Degradation of Fe(III)-Tannic Acid Nanofilms. Joo H; Kim S; Park K; Jang SY; Kang K; Kim H; Park JH Chem Asian J; 2024 Sep; ():e202400864. PubMed ID: 39238279 [TBL] [Abstract][Full Text] [Related]
8. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers. Yi J; Lam TI; Yokoyama W; Cheng LW; Zhong F J Agric Food Chem; 2014 Sep; 62(35):8900-7. PubMed ID: 25131216 [TBL] [Abstract][Full Text] [Related]
9. Double Cross-Linked Chitosan Composite Films Developed with Oxidized Tannic Acid and Ferric Ions Exhibit High Strength and Excellent Water Resistance. Yang J; Li M; Wang Y; Wu H; Zhen T; Xiong L; Sun Q Biomacromolecules; 2019 Feb; 20(2):801-812. PubMed ID: 30608151 [TBL] [Abstract][Full Text] [Related]
10. Interaction of beta-lactoglobulin with resveratrol and its biological implications. Liang L; Tajmir-Riahi HA; Subirade M Biomacromolecules; 2008 Jan; 9(1):50-6. PubMed ID: 18067252 [TBL] [Abstract][Full Text] [Related]
11. Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin. Xie L; Wehling RL; Ciftci O; Zhang Y Food Res Int; 2017 Dec; 102():195-202. PubMed ID: 29195940 [TBL] [Abstract][Full Text] [Related]
12. Thickness-Tunable Eggshell Membrane Hydrolysate Nanocoating with Enhanced Cytocompatibility and Neurite Outgrowth. Kim S; Youn W; Choi IS; Park JH Langmuir; 2019 Sep; 35(38):12562-12568. PubMed ID: 31448611 [TBL] [Abstract][Full Text] [Related]
13. Resveratrol: Challenges and prospects in extraction and hybridization with nanoparticles, polymers, and bio-ceramics. Ben Dassi R; Ibidhi S; Jemai H; Cherif A; Driouich Chaouachi R Phytother Res; 2024 Sep; ():. PubMed ID: 39228146 [TBL] [Abstract][Full Text] [Related]
14. Resveratrol Induces the Conversion from Amyloid to Amorphous Aggregation of β-lactoglobulin>. Ma B; Zhang F; Liu Y; Xie J; Wang X Protein Pept Lett; 2018 Feb; 24(12):1113-1119. PubMed ID: 28925863 [TBL] [Abstract][Full Text] [Related]
15. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Neves AR; Lúcio M; Martins S; Lima JL; Reis S Int J Nanomedicine; 2013; 8():177-87. PubMed ID: 23326193 [TBL] [Abstract][Full Text] [Related]
16. Cationic β-lactoglobulin nanoparticles as a bioavailability enhancer: protein characterization and particle formation. Teng Z; Li Y; Luo Y; Zhang B; Wang Q Biomacromolecules; 2013 Aug; 14(8):2848-56. PubMed ID: 23789855 [TBL] [Abstract][Full Text] [Related]
17. Assembly of surface-independent polyphenol/liquid gallium composite nanocoatings. Centurion F; Hassan MM; Tang J; Allioux FM; Chakraborty S; Chen R; Mao G; Kumar N; Kalantar-Zadeh K; Rahim MA Nanoscale; 2022 Oct; 14(39):14760-14769. PubMed ID: 36178260 [TBL] [Abstract][Full Text] [Related]
18. Administration of resveratrol: What formulation solutions to bioavailability limitations? Amri A; Chaumeil JC; Sfar S; Charrueau C J Control Release; 2012 Mar; 158(2):182-93. PubMed ID: 21978644 [TBL] [Abstract][Full Text] [Related]
19. Protein-decorated reduced oxide graphene composite and its application to SERS. Lu F; Zhang S; Gao H; Jia H; Zheng L ACS Appl Mater Interfaces; 2012 Jun; 4(6):3278-84. PubMed ID: 22692825 [TBL] [Abstract][Full Text] [Related]
20. Ultrasmooth, biocompatible, and removable nanocoating for hollow-core microstructured optical fibers. Ermatov T; Novoselova M; Skibina J; Machnev A; Gorin D; Noskov RE Opt Lett; 2021 Oct; 46(19):4828-4831. PubMed ID: 34598210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]