These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34581391)

  • 1. A 3D-cascade-microlens optofluidic chip for refractometry with adjustable sensitivity.
    Tang J; Qiu G; Zhang X; Wang J
    Lab Chip; 2021 Sep; 21(19):3784-3792. PubMed ID: 34581391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time and high-sensitivity refractive index sensing with an arched optofluidic waveguide.
    Yan R; Cui E; Zhao S; Zhou F; Wang D; Lei C
    Opt Express; 2022 May; 30(10):16031-16043. PubMed ID: 36221456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Measurement of Refractive Index Using 3D-Printed Optofluidic Fiber Sensor.
    Leça JM; Magalhães Y; Antunes P; Pereira V; Ferreira MS
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive label-free coupled optofluidic ring laser sensor.
    Ren L; Wu X; Li M; Zhang X; Liu L; Xu L
    Opt Lett; 2012 Sep; 37(18):3873-5. PubMed ID: 23041888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics.
    Riesen N; Peterkovic ZQ; Guan B; François A; Lancaster DG; Priest C
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Optofluidic Imaging System Integrated with Tunable Microlens Arrays.
    Zhong Y; Yu H; Wen Y; Zhou P; Guo H; Zou W; Lv X; Liu L
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11994-12004. PubMed ID: 36655899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive optofluidic coupled Fabry-Perot capillary sensors.
    Zhao X; Zhou Y; Li Y; Guo J; Liu Z; Luo M; Guo Z; Yang X; Zhang M; Wang Y; Wu X
    Opt Express; 2022 Dec; 30(25):45070-45081. PubMed ID: 36522917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluid Switching-Induced Transient Refractive Interface.
    Tang J; Qiu G; Cao X; deMello A; Wang J
    ACS Sens; 2022 Nov; 7(11):3521-3529. PubMed ID: 36356161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable and Dynamic Optofluidic Microlens Arrays Based on Droplets.
    Liang L; Hu X; Shi Y; Zhao S; Hu Q; Liang M; Ai Y
    Anal Chem; 2022 Nov; 94(43):14938-14946. PubMed ID: 36263633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical refractometry using lensless holography and autofocusing.
    Bian Y; Zhang Y; Yin P; Li H; Ozcan A
    Opt Express; 2018 Nov; 26(23):29614-29628. PubMed ID: 30469923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing.
    Li C; Liu Y; Lang C; Zhang Y; Qu S
    Lab Chip; 2022 Sep; 22(19):3734-3743. PubMed ID: 36039614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamically tunable optofluidic cylindrical microlens.
    Mao X; Waldeisen JR; Juluri BK; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1303-8. PubMed ID: 17896014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cost planar waveguide-based optofluidic sensor for real-time refractive index sensing.
    Barshilia D; Chau LK; Chang GE
    Opt Express; 2020 Sep; 28(19):27337-27345. PubMed ID: 32988030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing.
    Liu IC; Chen PC; Chau LK; Chang GE
    Opt Express; 2018 Jan; 26(1):273-283. PubMed ID: 29328304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable optofluidic microbubble lens.
    Zhao X; Chen Y; Guo Z; Zhou Y; Guo J; Liu Z; Zhang X; Xiao L; Fei Y; Wu X
    Opt Express; 2022 Feb; 30(5):8317-8329. PubMed ID: 35299575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications.
    Sequeira F; Duarte D; Bilro L; Rudnitskaya A; Pesavento M; Zeni L; Cennamo N
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.
    Chin LK; Liu AQ; Soh YC; Lim CS; Lin CL
    Lab Chip; 2010 Apr; 10(8):1072-8. PubMed ID: 20358116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications.
    Harazim SM; Bolaños Quiñones VA; Kiravittaya S; Sanchez S; Schmidt OG
    Lab Chip; 2012 Aug; 12(15):2649-55. PubMed ID: 22739437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Performance of wavelength modulation surface plasmon resonance biosensor].
    Luo YH; Xu MY; Chen XL; Tang JY; Wang F; Zhang YL; He YH; Chen Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1178-81. PubMed ID: 25095402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization.
    Li Y; Fang Y; Wang J; Wang L; Tang S; Jiang C; Zheng L; Mei Y
    Lab Chip; 2016 Nov; 16(22):4406-4414. PubMed ID: 27752686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.