BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34581432)

  • 1. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA.
    Zhan X; Deng L; Chen G
    Biopolymers; 2022 Feb; 113(2):e23476. PubMed ID: 34581432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs.
    Patil KM; Toh DK; Yuan Z; Meng Z; Shu Z; Zhang H; Ong AAL; Krishna MS; Lu L; Lu Y; Chen G
    Nucleic Acids Res; 2018 Sep; 46(15):7506-7521. PubMed ID: 30011039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
    Devi G; Yuan Z; Lu Y; Zhao Y; Chen G
    Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog.
    Krishna MS; Toh DK; Meng Z; Ong AAL; Wang Z; Lu Y; Xia K; Prabakaran M; Chen G
    Anal Chem; 2019 Apr; 91(8):5331-5338. PubMed ID: 30873827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase.
    Ong AAL; Toh DK; Patil KM; Meng Z; Yuan Z; Krishna MS; Devi G; Haruehanroengra P; Lu Y; Xia K; Okamura K; Sheng J; Chen G
    Biochemistry; 2019 Mar; 58(10):1319-1331. PubMed ID: 30775913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure.
    Kesy J; Patil KM; Kumar SR; Shu Z; Yong HY; Zimmermann L; Ong AAL; Toh DK; Krishna MS; Yang L; Decout JL; Luo D; Prabakaran M; Chen G; Kierzek E
    Bioconjug Chem; 2019 Mar; 30(3):931-943. PubMed ID: 30721034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-specific recognition of structured RNA by triplex-forming peptide nucleic acids.
    Hnedzko D; Rozners E
    Methods Enzymol; 2019; 623():401-416. PubMed ID: 31239055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triplex-Forming Peptide Nucleic Acid Probe Having Thiazole Orange as a Base Surrogate for Fluorescence Sensing of Double-stranded RNA.
    Sato T; Sato Y; Nishizawa S
    J Am Chem Soc; 2016 Aug; 138(30):9397-400. PubMed ID: 27442229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids.
    Toh DK; Patil KM; Chen G
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic, thermodynamic and kinetic analysis of selective triplex formation by peptide nucleic acid with double-stranded RNA over its DNA counterpart.
    Sato T; Sato Y; Nishizawa S
    Biopolymers; 2022 Jan; 113(1):e23474. PubMed ID: 34478151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.
    Hnedzko D; Cheruiyot SK; Rozners E
    Curr Protoc Nucleic Acid Chem; 2014 Sep; 58():4.60.1-23. PubMed ID: 25199637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triplex-Forming Peptide Nucleic Acids with Extended Backbones.
    Kumar V; Brodyagin N; Rozners E
    Chembiochem; 2020 Dec; 21(23):3410-3416. PubMed ID: 32697857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA.
    Brodyagin N; Hnedzko D; MacKay JA; Rozners E
    Methods Mol Biol; 2020; 2105():157-172. PubMed ID: 32088869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple-helical recognition of RNA using 2-aminopyridine-modified PNA at physiologically relevant conditions.
    Zengeya T; Gupta P; Rozners E
    Angew Chem Int Ed Engl; 2012 Dec; 51(50):12593-6. PubMed ID: 23125029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and thermodynamic analysis of triplex formation between peptide nucleic acid and double-stranded RNA.
    Sato T; Sakamoto N; Nishizawa S
    Org Biomol Chem; 2018 Feb; 16(7):1178-1187. PubMed ID: 29376179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone-modified peptide nucleic acids.
    Hnedzko D; McGee DW; Karamitas YA; Rozners E
    RNA; 2017 Jan; 23(1):58-69. PubMed ID: 27742909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence selective recognition of double-stranded RNA using triple helix-forming peptide nucleic acids.
    Zengeya T; Gupta P; Rozners E
    Methods Mol Biol; 2014; 1050():83-94. PubMed ID: 24297352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting.
    Puah RY; Jia H; Maraswami M; Toh DK; Ero R; Yang L; Patil KM; Ong AAL; Krishna MS; Sun R; Tong C; Huang M; Chen X; Loh TP; Gao YG; Liu DX; Chen G
    Biochemistry; 2018 Jan; 57(1):149-159. PubMed ID: 29116759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale structures and mechanics of peptide nucleic acids.
    Chhetri KB; Sharma A; Naskar S; Maiti PK
    Nanoscale; 2022 May; 14(17):6620-6635. PubMed ID: 35421892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating G-C Pair-Recognizing Guanidinium into PNAs for Sequence and Structure Specific Recognition of dsRNAs over dsDNAs and ssRNAs.
    Krishna MS; Wang Z; Zheng L; Bowry J; Ong AAL; Mu Y; Prabakaran M; Chen G
    Biochemistry; 2019 Sep; 58(36):3777-3788. PubMed ID: 31424191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.