These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34581460)
1. On a new piecewise regression model with cure rate: Diagnostics and application to medical data. Gómez YM; Gallardo DI; Leão J; Calsavara VF Stat Med; 2021 Dec; 40(29):6723-6742. PubMed ID: 34581460 [TBL] [Abstract][Full Text] [Related]
2. Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data. Leão J; Leiva V; Saulo H; Tomazella V Stat Med; 2018 Dec; 37(29):4421-4440. PubMed ID: 30109718 [TBL] [Abstract][Full Text] [Related]
3. Cure rate models for heterogeneous competing causes. Brandão M; Leão J; Gallardo DI; Bourguignon M Stat Methods Med Res; 2023 Sep; 32(9):1823-1841. PubMed ID: 37489264 [TBL] [Abstract][Full Text] [Related]
4. A new cure rate model with flexible competing causes with applications to melanoma and transplantation data. Leão J; Bourguignon M; Gallardo DI; Rocha R; Tomazella V Stat Med; 2020 Oct; 39(24):3272-3284. PubMed ID: 32716081 [TBL] [Abstract][Full Text] [Related]
5. Estimating the grid of time-points for the piecewise exponential model. Demarqui FN; Loschi RH; Colosimo EA Lifetime Data Anal; 2008 Sep; 14(3):333-56. PubMed ID: 18463801 [TBL] [Abstract][Full Text] [Related]
6. A flexible family of transformation cure rate models. Koutras MV; Milienos FS Stat Med; 2017 Jul; 36(16):2559-2575. PubMed ID: 28417477 [TBL] [Abstract][Full Text] [Related]
7. Improved survival modeling in cancer research using a reduced piecewise exponential approach. Han G; Schell MJ; Kim J Stat Med; 2014 Jan; 33(1):59-73. PubMed ID: 23900779 [TBL] [Abstract][Full Text] [Related]
8. On a reparameterization of a flexible family of cure models. Milienos FS Stat Med; 2022 Sep; 41(21):4091-4111. PubMed ID: 35716033 [TBL] [Abstract][Full Text] [Related]
9. Model building in nonproportional hazard regression. Rodríguez-Girondo M; Kneib T; Cadarso-Suárez C; Abu-Assi E Stat Med; 2013 Dec; 32(30):5301-14. PubMed ID: 24038401 [TBL] [Abstract][Full Text] [Related]
10. Survival models induced by zero-modified power series discrete frailty: Application with a melanoma data set. Molina KC; Calsavara VF; Tomazella VD; Milani EA Stat Methods Med Res; 2021 Aug; 30(8):1874-1889. PubMed ID: 33955295 [TBL] [Abstract][Full Text] [Related]
11. A novel Bayesian continuous piecewise linear log-hazard model, with estimation and inference via reversible jump Markov chain Monte Carlo. Chapple AG; Peak T; Hemal A Stat Med; 2020 May; 39(12):1766-1780. PubMed ID: 32086957 [TBL] [Abstract][Full Text] [Related]
12. A general class of promotion time cure rate models with a new biological interpretation. Gómez YM; Gallardo DI; Bourguignon M; Bertolli E; Calsavara VF Lifetime Data Anal; 2023 Jan; 29(1):66-86. PubMed ID: 36114312 [TBL] [Abstract][Full Text] [Related]
13. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research. Luque-Fernandez MA; Belot A; Quaresma M; Maringe C; Coleman MP; Rachet B BMC Med Res Methodol; 2016 Oct; 16(1):129. PubMed ID: 27716079 [TBL] [Abstract][Full Text] [Related]
14. Long-term frailty modeling using a non-proportional hazards model: Application with a melanoma dataset. Calsavara VF; Milani EA; Bertolli E; Tomazella V Stat Methods Med Res; 2020 Aug; 29(8):2100-2118. PubMed ID: 31691640 [TBL] [Abstract][Full Text] [Related]
15. Bayesian cure rate models induced by frailty in survival analysis. de Souza D; Cancho VG; Rodrigues J; Balakrishnan N Stat Methods Med Res; 2017 Oct; 26(5):2011-2028. PubMed ID: 28656796 [TBL] [Abstract][Full Text] [Related]
16. A simplified stochastic EM algorithm for cure rate model with negative binomial competing risks: An application to breast cancer data. Pal S Stat Med; 2021 Dec; 40(28):6387-6409. PubMed ID: 34783093 [TBL] [Abstract][Full Text] [Related]
17. Bayesian regularization for flexible baseline hazard functions in Cox survival models. Lázaro E; Armero C; Alvares D Biom J; 2021 Jan; 63(1):7-26. PubMed ID: 32885493 [TBL] [Abstract][Full Text] [Related]
18. Semiparametric accelerated failure time cure rate mixture models with competing risks. Choi S; Zhu L; Huang X Stat Med; 2018 Jan; 37(1):48-59. PubMed ID: 28983935 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo simulation of the power of a test for the exponential distribution of survival times. Holland B Comput Methods Programs Biomed; 1989 Aug; 29(4):245-50. PubMed ID: 2791525 [TBL] [Abstract][Full Text] [Related]
20. Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models. Salmerón D; Cano JA; Chirlaque MD Stat Med; 2015 Aug; 34(19):2755-67. PubMed ID: 25944082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]