These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34581560)
1. Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors. Zhu M; Zhou J; Sun P; Peng LM; Zhang Z ACS Appl Mater Interfaces; 2021 Oct; 13(40):47756-47763. PubMed ID: 34581560 [TBL] [Abstract][Full Text] [Related]
2. Radiation-Hard and Repairable Complementary Metal-Oxide-Semiconductor Circuits Integrating n-type Indium Oxide and p-type Carbon Nanotube Field-Effect Transistors. Luo M; Zhu M; Wei M; Shao S; Robin M; Wei C; Cui Z; Zhao J; Zhang Z ACS Appl Mater Interfaces; 2020 Nov; 12(44):49963-49970. PubMed ID: 33095560 [TBL] [Abstract][Full Text] [Related]
3. Ultra-Strong Comprehensive Radiation Effect Tolerance in Carbon Nanotube Electronics. Zhu M; Lu P; Wang X; Chen Q; Zhu H; Zhang Y; Zhou J; Xu H; Han Z; Han J; Chen R; Li B; Peng LM; Zhang Z Small; 2023 Jan; 19(1):e2204537. PubMed ID: 36366937 [TBL] [Abstract][Full Text] [Related]
4. Heavy Ion Displacement Damage Effect in Carbon Nanotube Field Effect Transistors. Lu P; Zhu M; Zhao P; Fan C; Zhu H; Gao J; Yang C; Han Z; Li B; Liu J; Zhang Z ACS Appl Mater Interfaces; 2023 Mar; 15(8):10936-10946. PubMed ID: 36791232 [TBL] [Abstract][Full Text] [Related]
5. Low-frequency noise in individual carbon nanotube field-effect transistors with top, side and back gate configurations: effect of gamma irradiation. Sydoruk VA; Goß K; Meyer C; Petrychuk MV; Danilchenko BA; Weber P; Stampfer C; Li J; Vitusevich SA Nanotechnology; 2014 Jan; 25(3):035703. PubMed ID: 24345726 [TBL] [Abstract][Full Text] [Related]
6. Improving the Performance of Aligned Carbon Nanotube-Based Transistors by Refreshing the Substrate Surface. Lin Y; Cao Y; Lu H; Liu C; Zhang Z; Jin C; Peng LM; Zhang Z ACS Appl Mater Interfaces; 2023 Mar; 15(8):10830-10837. PubMed ID: 36795423 [TBL] [Abstract][Full Text] [Related]
7. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. Yang Y; Ding L; Han J; Zhang Z; Peng LM ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433 [TBL] [Abstract][Full Text] [Related]
8. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays. Liu C; Cao Y; Wang B; Zhang Z; Lin Y; Xu L; Yang Y; Jin C; Peng LM; Zhang Z ACS Nano; 2022 Dec; 16(12):21482-21490. PubMed ID: 36416375 [TBL] [Abstract][Full Text] [Related]
9. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length? Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135 [TBL] [Abstract][Full Text] [Related]
10. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz. Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003 [TBL] [Abstract][Full Text] [Related]
11. Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation. Hong WK; Lee C; Nepal D; Geckeler KE; Shin K; Lee T Nanotechnology; 2006 Nov; 17(22):5675-80. PubMed ID: 21727341 [TBL] [Abstract][Full Text] [Related]
12. Flexible Solid-Electrolyte-Gated-Dielectric Carbon Nanotube Thin Film Transistors and Integrated Circuits with the Recorded Radiation Tolerance and Reparability. Zhang N; Li J; Sui N; Kang K; Deng M; Shao S; Gu W; Liang L; Li M; Zhao J Nano Lett; 2024 Jun; 24(25):7688-7697. PubMed ID: 38869197 [TBL] [Abstract][Full Text] [Related]
13. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. Chen B; Zhang P; Ding L; Han J; Qiu S; Li Q; Zhang Z; Peng LM Nano Lett; 2016 Aug; 16(8):5120-8. PubMed ID: 27459084 [TBL] [Abstract][Full Text] [Related]
14. Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. Si J; Zhong D; Xu H; Xiao M; Yu C; Zhang Z; Peng LM ACS Nano; 2018 Jan; 12(1):627-634. PubMed ID: 29303553 [TBL] [Abstract][Full Text] [Related]
15. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. Ding L; Wang Z; Pei T; Zhang Z; Wang S; Xu H; Peng F; Li Y; Peng LM ACS Nano; 2011 Apr; 5(4):2512-9. PubMed ID: 21370813 [TBL] [Abstract][Full Text] [Related]
16. Gate Spacer Investigation for Improving the Speed of High-Frequency Carbon Nanotube-Based Field-Effect Transistors. Hartmann M; Tittmann-Otto J; Böttger S; Heldt G; Claus M; Schulz SE; Schröter M; Hermann S ACS Appl Mater Interfaces; 2020 Jun; 12(24):27461-27466. PubMed ID: 32436374 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. Qiu C; Zhang Z; Zhong D; Si J; Yang Y; Peng LM ACS Nano; 2015 Jan; 9(1):969-77. PubMed ID: 25545108 [TBL] [Abstract][Full Text] [Related]
18. Scaling of N-Type Field-Effect Transistors Based on Aligned Carbon Nanotube Arrays. Liu C; Cao Y; Lu H; Lin Y; Jin C; Zhang Z ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39356653 [TBL] [Abstract][Full Text] [Related]
19. DC modeling and the source of flicker noise in passivated carbon nanotube transistors. Kim S; Kim S; Janes DB; Mohammadi S; Back J; Shim M Nanotechnology; 2010 Sep; 21(38):385203. PubMed ID: 20798468 [TBL] [Abstract][Full Text] [Related]
20. Nonideality in Arrayed Carbon Nanotube Field Effect Transistors Revealed by High-Resolution Transmission Electron Microscopy. Wang B; Lu H; Ding S; Ze Y; Liu Y; Zhang Z; Yin H; Gao B; Li Y; He L; Kou Y; Zhang Z; Jin C ACS Nano; 2024 Aug; 18(33):22474-22483. PubMed ID: 39110064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]