These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3458171)

  • 1. Gene for lysine tRNA1 may be a progenitor of the highly repetitive and transcribable sequences present in the salmon genome.
    Matsumoto K; Murakami K; Okada N
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3156-60. PubMed ID: 3458171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudouridylic modification of a 6S RNA transcribed in vitro from highly repetitive and transcribable (Hirt) sequences of salmon total DNA.
    Matsumoto K; Murakami K; Okada N
    Biochem Biophys Res Commun; 1984 Oct; 124(2):514-22. PubMed ID: 6208906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total DNA transcription in vitro: a procedure to detect highly repetitive and transcribable sequences with tRNA-like structures.
    Endoh H; Okada N
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):251-5. PubMed ID: 3455763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of the salmonid Hpa 1 family in the salmonid species demonstrated by in vitro runoff transcription assay of total genomic DNA: a procedure to estimate repetitive frequency and sequence divergence of a certain repetitive family with a few known sequences.
    Koishi R; Okada N
    J Mol Evol; 1991 Jan; 32(1):43-52. PubMed ID: 1707099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total DNA transcription reveals the existence of highly repetitive transcribable sequences in higher animals.
    Okada N; Sakamoto K; Kondo A
    J Biochem; 1983 Mar; 93(3):723-31. PubMed ID: 6192125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-specific amplification of tRNA-derived short interspersed repetitive elements (SINEs) by retroposition: a process of parasitization of entire genomes during the evolution of salmonids.
    Takasaki N; Murata S; Saitoh M; Kobayashi T; Park L; Okada N
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10153-7. PubMed ID: 7937854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly repetitive and transcribable sequence in the tortoise genome is probably a retroposon.
    Endoh H; Nagahashi S; Okada N
    Eur J Biochem; 1990 Apr; 189(1):25-31. PubMed ID: 1691979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudouridylation of yeast ribosomal precursor RNA.
    Brand RC; Klootwijk J; Sibum CP; Planta RJ
    Nucleic Acids Res; 1979 Sep; 7(1):121-34. PubMed ID: 114983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a new termination signal for RNA polymerase III responsible for generation of a discrete-sized RNA transcribed from salmon total genomic DNA in a HeLa cell extract.
    Matsumoto K; Takii T; Okada N
    J Biol Chem; 1989 Jan; 264(2):1124-31. PubMed ID: 2463246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and characterization of anionic and cationic variants of trypsin from Atlantic salmon.
    Male R; Lorens JB; SmalÄs AO; Torrissen KR
    Eur J Biochem; 1995 Sep; 232(2):677-85. PubMed ID: 7556223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can SINEs: a family of tRNA-derived retroposons specific to the superfamily Canoidea.
    Coltman DW; Wright JM
    Nucleic Acids Res; 1994 Jul; 22(14):2726-30. PubMed ID: 8052527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new rice repetitive DNA shows sequence homology to both 5S RNA and tRNA.
    Wu TY; Wu R
    Nucleic Acids Res; 1987 Aug; 15(15):5913-23. PubMed ID: 3627973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription by RNA polymerase III.
    Ciliberto G; Castagnoli L; Cortese R
    Curr Top Dev Biol; 1983; 18():59-88. PubMed ID: 6340979
    [No Abstract]   [Full Text] [Related]  

  • 15. Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.
    Benslimane AA; Dron M; Hartmann C; Rode A
    Nucleic Acids Res; 1986 Oct; 14(20):8111-9. PubMed ID: 3774553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synthesis of fragments of the D-branch of yeast valine tRNA1 and their analogs].
    Zhenodarova SM; Kliagina VP; Sedel'nikova EA; Smol'ianinova OA
    Bioorg Khim; 1986 Feb; 12(2):220-9. PubMed ID: 3633726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of pseudouridine in the in vitro transcribed tRNATyr precursor.
    Ciampi MS; Arena F; Cortese R
    FEBS Lett; 1977 May; 77(1):75-82. PubMed ID: 323061
    [No Abstract]   [Full Text] [Related]  

  • 18. Transcription of two classes of rat growth hormone gene-associated repetitive DNA: differences in activity and effects of tandem repeat structure.
    Gutierrez-Hartmann A; Lieberburg I; Gardner D; Baxter JD; Cathala GG
    Nucleic Acids Res; 1984 Sep; 12(18):7153-73. PubMed ID: 6091058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rodent type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes.
    Sakamoto K; Okada N
    J Mol Evol; 1985; 22(2):134-40. PubMed ID: 3934392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duplicate insulin-like growth factor-I genes in salmon display alternative splicing pathways.
    Wallis AE; Devlin RH
    Mol Endocrinol; 1993 Mar; 7(3):409-22. PubMed ID: 7683374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.