These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34581840)

  • 1. Using adaptive psychophysics to identify the neural network reset time in subsecond interval timing.
    Sadibolova R; Sun S; Terhune DB
    Exp Brain Res; 2021 Dec; 239(12):3565-3572. PubMed ID: 34581840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual-auditory differences in duration discrimination depend on modality-specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis.
    Rammsayer T; Pichelmann S
    Q J Exp Psychol (Hove); 2018 Nov; 71(11):2364-2377. PubMed ID: 30362412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast transfer of crossmodal time interval training.
    Chen L; Zhou X
    Exp Brain Res; 2014 Jun; 232(6):1855-64. PubMed ID: 24570386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model.
    Buonomano DV; Bramen J; Khodadadifar M
    Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1525):1865-73. PubMed ID: 19487189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual differences in first- and second-order temporal judgment.
    Corcoran AW; Groot C; Bruno A; Johnston A; Cropper SJ
    PLoS One; 2018; 13(2):e0191422. PubMed ID: 29401520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual-auditory differences in duration discrimination of intervals in the subsecond and second range.
    Rammsayer TH; Borter N; Troche SJ
    Front Psychol; 2015; 6():1626. PubMed ID: 26579013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of temporal aspects in auditory temporal processing tests].
    Murphy CF; Schochat E
    Pro Fono; 2007; 19(3):259-66. PubMed ID: 17934601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of type of interval, sensory modality, base duration, and psychophysical task on the discrimination of brief time intervals.
    Rammsayer TH
    Atten Percept Psychophys; 2014 May; 76(4):1185-96. PubMed ID: 24596081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating dedicated and intrinsic models of temporal encoding by varying context.
    Spencer RM; Karmarkar U; Ivry RB
    Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1525):1853-63. PubMed ID: 19487188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing in the absence of clocks: encoding time in neural network states.
    Karmarkar UR; Buonomano DV
    Neuron; 2007 Feb; 53(3):427-38. PubMed ID: 17270738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys.
    Zarco W; Merchant H; Prado L; Mendez JC
    J Neurophysiol; 2009 Dec; 102(6):3191-202. PubMed ID: 19812296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the replication of Kristofferson's (1980) quantal timing for duration discrimination: some learning but no quanta and not much of a Weber constant.
    Matthews WJ; Grondin S
    Atten Percept Psychophys; 2012 Jul; 74(5):1056-72. PubMed ID: 22391892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interval Timing in Pediatric Multiple Sclerosis: Impaired in the Subsecond Range but Unimpaired in the One-Second Range.
    Troche SJ; Kapanci T; Rammsayer TH; Kesseler CPA; Häusler MG; Geis T; Schimmel M; Elpers C; Kreth JH; Thiels C; Rostásy K
    Front Neurol; 2020; 11():575780. PubMed ID: 33193026
    [No Abstract]   [Full Text] [Related]  

  • 14. A supramodal and conceptual representation of subsecond time revealed with perceptual learning of temporal interval discrimination.
    Xiong YZ; Guan SC; Yu C
    Sci Rep; 2022 Jun; 12(1):10668. PubMed ID: 35739220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timescale- and Sensory Modality-Dependency of the Central Tendency of Time Perception.
    Murai Y; Yotsumoto Y
    PLoS One; 2016; 11(7):e0158921. PubMed ID: 27404269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timing in the absence of a clock reset.
    Jovanovic L; Mamassian P
    J Vis; 2018 Jun; 18(6):13. PubMed ID: 30029221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrotemporal resolution tradeoff in auditory processing as revealed by human auditory brainstem responses and psychophysical indices.
    Bidelman GM; Syed Khaja A
    Neurosci Lett; 2014 Jun; 572():53-7. PubMed ID: 24793771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus complexity and prospective timing: clues for a parallel process model of time perception.
    Aubry F; Guillaume N; Mogicato G; Bergeret L; Celsis P
    Acta Psychol (Amst); 2008 May; 128(1):63-74. PubMed ID: 18001688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatosensory temporal discrimination learning generalizes to motor interval production.
    Planetta PJ; Servos P
    Brain Res; 2008 Oct; 1233():51-7. PubMed ID: 18694735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The context of temporal processing is represented in the multidimensional relationships between timing tasks.
    Merchant H; Zarco W; Bartolo R; Prado L
    PLoS One; 2008 Sep; 3(9):e3169. PubMed ID: 18779860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.