These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34581959)

  • 1. Effect of foam insertion in aneurysm sac on flow structures in parent lumen: relating vortex structures with disturbed shear.
    Pandey PK; Das MK
    Phys Eng Sci Med; 2021 Dec; 44(4):1231-1248. PubMed ID: 34581959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and visualization of hemodynamic loading in aneurysm sac and neck: Effect of foam insertion.
    Pandey PK; Paul C; Das MK; Muralidhar K
    Proc Inst Mech Eng H; 2021 Aug; 235(8):927-939. PubMed ID: 33971763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Hemodynamic analyses of large intracranial aneurysms].
    Wu J; Liu A; Fu C; Zhao Y; Qian Z; Kang H; Peng T; Wu Z
    Zhonghua Yi Xue Za Zhi; 2014 Jul; 94(25):1921-4. PubMed ID: 25253001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Assessment of Hemodynamics Vortices Within the Cerebral Vasculature Using Informational Entropy.
    Sunderland K; Zhao F; Jiang J
    Methods Mol Biol; 2022; 2375():247-260. PubMed ID: 34591313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular dynamics of a shape memory polymer foam aneurysm treatment technique.
    Ortega J; Maitland D; Wilson T; Tsai W; Savaş O; Saloner D
    Ann Biomed Eng; 2007 Nov; 35(11):1870-84. PubMed ID: 17676399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions.
    Finol EA; Keyhani K; Amon CH
    J Biomech Eng; 2003 Apr; 125(2):207-17. PubMed ID: 12751282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsatile flow effects on the hemodynamics of intracranial aneurysms.
    Le TB; Borazjani I; Sotiropoulos F
    J Biomech Eng; 2010 Nov; 132(11):111009. PubMed ID: 21034150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Hostile Hemodynamics and Geometries of Cerebral Aneurysms: A Case-Control Study.
    Chung BJ; Mut F; Putman CM; Hamzei-Sichani F; Brinjikji W; Kallmes D; Jimenez CM; Cebral JR
    AJNR Am J Neuroradiol; 2018 Oct; 39(10):1860-1866. PubMed ID: 30166431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient.
    Kulcsár Z; Ugron A; Marosfoi M; Berentei Z; Paál G; Szikora I
    AJNR Am J Neuroradiol; 2011 Mar; 32(3):587-94. PubMed ID: 21310860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of stents and flow diverters on hemodynamics in idealized aneurysm models.
    Seshadhri S; Janiga G; Beuing O; Skalej M; Thévenin D
    J Biomech Eng; 2011 Jul; 133(7):071005. PubMed ID: 21823744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood flow dynamics in saccular aneurysm models of the basilar artery.
    Valencia AA; Guzmán AM; Finol EA; Amon CH
    J Biomech Eng; 2006 Aug; 128(4):516-26. PubMed ID: 16813443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.
    Sunderland K; Haferman C; Chintalapani G; Jiang J
    Comput Math Methods Med; 2016; 2016():7406215. PubMed ID: 27891172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of flow characteristics by stenting in aneurysm models: influence of aneurysm geometry and stent porosity.
    Rhee K; Han MH; Cha SH
    Ann Biomed Eng; 2002; 30(7):894-904. PubMed ID: 12398420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms.
    Chien A; Tateshima S; Sayre J; Castro M; Cebral J; Viñuela F
    Surg Neurol; 2009 Nov; 72(5):444-50; discussion 450. PubMed ID: 19329152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in blood flow due to stented parent artery expansion in an intracranial aneurysm.
    Mori F; Ohta M; Matsuzawa T
    Technol Health Care; 2015; 23(1):9-21. PubMed ID: 25391531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.