These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34582075)
1. Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO Suo X; Zhang F; Yang Z; Chen H; Wang T; Wang Z; Kobayashi T; Do-Thanh CL; Maltsev D; Liu Z; Dai S Angew Chem Int Ed Engl; 2021 Dec; 60(49):25688-25694. PubMed ID: 34582075 [TBL] [Abstract][Full Text] [Related]
2. Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. Wang Y; Chen J; Wang G; Li Y; Wen Z Angew Chem Int Ed Engl; 2018 Oct; 57(40):13120-13124. PubMed ID: 30106508 [TBL] [Abstract][Full Text] [Related]
3. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595 [TBL] [Abstract][Full Text] [Related]
4. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO Jena HS; Krishnaraj C; Schmidt J; Leus K; Van Hecke K; Van Der Voort P Chemistry; 2020 Feb; 26(7):1548-1557. PubMed ID: 31603596 [TBL] [Abstract][Full Text] [Related]
5. Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO Wang G; Leus K; Zhao S; Van Der Voort P ACS Appl Mater Interfaces; 2018 Jan; 10(1):1244-1249. PubMed ID: 29235840 [TBL] [Abstract][Full Text] [Related]
6. Construction of Fluorine- and Piperazine-Engineered Covalent Triazine Frameworks Towards Enhanced Dual-Ion Positive Electrode Performance. Wang T; Gaugler JA; Li M; Thapaliya BP; Fan J; Qiu L; Moitra D; Kobayashi T; Popovs I; Yang Z; Dai S ChemSusChem; 2023 Feb; 16(4):e202201219. PubMed ID: 35996839 [TBL] [Abstract][Full Text] [Related]
7. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl Lan ZA; Wu M; Fang Z; Zhang Y; Chen X; Zhang G; Wang X Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202201482. PubMed ID: 35218273 [TBL] [Abstract][Full Text] [Related]
8. Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach. Wang K; Yang LM; Wang X; Guo L; Cheng G; Zhang C; Jin S; Tan B; Cooper A Angew Chem Int Ed Engl; 2017 Nov; 56(45):14149-14153. PubMed ID: 28926688 [TBL] [Abstract][Full Text] [Related]
9. Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking. Yang Z; Chen H; Wang S; Guo W; Wang T; Suo X; Jiang DE; Zhu X; Popovs I; Dai S J Am Chem Soc; 2020 Apr; 142(15):6856-6860. PubMed ID: 32220210 [TBL] [Abstract][Full Text] [Related]
10. Playing with covalent triazine framework tiles for improved CO Tuci G; Iemhoff A; Ba H; Luconi L; Rossin A; Papaefthimiou V; Palkovits R; Artz J; Pham-Huu C; Giambastiani G Beilstein J Nanotechnol; 2019; 10():1217-1227. PubMed ID: 31293859 [TBL] [Abstract][Full Text] [Related]
11. Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO Song KS; Talapaneni SN; Ashirov T; Coskun A ACS Appl Mater Interfaces; 2021 Jun; 13(22):26102-26108. PubMed ID: 34038084 [TBL] [Abstract][Full Text] [Related]
12. Bipolar Supercapacitive Performance of N-Containing Carbon Materials Derived from Covalent Triazine-Based Framework. Maity A; Siebels M; Jana A; Eswaran M; Dhanusuraman R; Janiak C; Bhunia A ChemSusChem; 2024 Sep; ():e202401716. PubMed ID: 39228217 [TBL] [Abstract][Full Text] [Related]
13. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors. Zhang Y; Zhang B; Chen L; Wang T; Di M; Jiang F; Xu X; Qiao S J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1534-1542. PubMed ID: 34500156 [TBL] [Abstract][Full Text] [Related]
14. Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors. Vadiyar MM; Liu X; Ye Z ACS Appl Mater Interfaces; 2019 Dec; 11(49):45805-45817. PubMed ID: 31724841 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Sun R; Wang X; Wang X; Tan B Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202117668. PubMed ID: 35038216 [TBL] [Abstract][Full Text] [Related]
16. A highly proton conductive perfluorinated covalent triazine framework via low-temperature synthesis. Guan L; Guo Z; Zhou Q; Zhang J; Cheng C; Wang S; Zhu X; Dai S; Jin S Nat Commun; 2023 Dec; 14(1):8114. PubMed ID: 38065936 [TBL] [Abstract][Full Text] [Related]
17. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO Xu G; Zhu Y; Xie W; Zhang S; Yao C; Xu Y Chem Asian J; 2019 Oct; 14(19):3259-3263. PubMed ID: 31441220 [TBL] [Abstract][Full Text] [Related]
18. Covalent Triazine Frameworks Based on the First Wessely ID; Schade AM; Dey S; Bhunia A; Nuhnen A; Janiak C; Bräse S Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34200941 [TBL] [Abstract][Full Text] [Related]
19. Layered S-Bridged Covalent Triazine Frameworks via a Bifunctional Template-Catalytic Strategy Enabling High-Performance Zinc-Ion Hybrid Supercapacitors. Liu B; Qian Y; Zhang J; Yang M; Liu Y; Zhang S Small; 2024 Jul; 20(30):e2310884. PubMed ID: 38376170 [TBL] [Abstract][Full Text] [Related]
20. Direct Synthesis of Microporous Bicarbazole-Based Covalent Triazine Frameworks for High-Performance Energy Storage and Carbon Dioxide Uptake. Mohamed MG; El-Mahdy AFM; Ahmed MMM; Kuo SW Chempluschem; 2019 Nov; 84(11):1767-1774. PubMed ID: 31943884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]