BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34582075)

  • 1. Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO
    Suo X; Zhang F; Yang Z; Chen H; Wang T; Wang Z; Kobayashi T; Do-Thanh CL; Maltsev D; Liu Z; Dai S
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25688-25694. PubMed ID: 34582075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane.
    Wang Y; Chen J; Wang G; Li Y; Wen Z
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13120-13124. PubMed ID: 30106508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors.
    Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO
    Jena HS; Krishnaraj C; Schmidt J; Leus K; Van Hecke K; Van Der Voort P
    Chemistry; 2020 Feb; 26(7):1548-1557. PubMed ID: 31603596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO
    Wang G; Leus K; Zhao S; Van Der Voort P
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1244-1249. PubMed ID: 29235840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Fluorine- and Piperazine-Engineered Covalent Triazine Frameworks Towards Enhanced Dual-Ion Positive Electrode Performance.
    Wang T; Gaugler JA; Li M; Thapaliya BP; Fan J; Qiu L; Moitra D; Kobayashi T; Popovs I; Yang Z; Dai S
    ChemSusChem; 2023 Feb; 16(4):e202201219. PubMed ID: 35996839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl
    Lan ZA; Wu M; Fang Z; Zhang Y; Chen X; Zhang G; Wang X
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202201482. PubMed ID: 35218273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach.
    Wang K; Yang LM; Wang X; Guo L; Cheng G; Zhang C; Jin S; Tan B; Cooper A
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14149-14153. PubMed ID: 28926688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking.
    Yang Z; Chen H; Wang S; Guo W; Wang T; Suo X; Jiang DE; Zhu X; Popovs I; Dai S
    J Am Chem Soc; 2020 Apr; 142(15):6856-6860. PubMed ID: 32220210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Playing with covalent triazine framework tiles for improved CO
    Tuci G; Iemhoff A; Ba H; Luconi L; Rossin A; Papaefthimiou V; Palkovits R; Artz J; Pham-Huu C; Giambastiani G
    Beilstein J Nanotechnol; 2019; 10():1217-1227. PubMed ID: 31293859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO
    Song KS; Talapaneni SN; Ashirov T; Coskun A
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26102-26108. PubMed ID: 34038084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors.
    Zhang Y; Zhang B; Chen L; Wang T; Di M; Jiang F; Xu X; Qiao S
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1534-1542. PubMed ID: 34500156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors.
    Vadiyar MM; Liu X; Ye Z
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45805-45817. PubMed ID: 31724841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach.
    Sun R; Wang X; Wang X; Tan B
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202117668. PubMed ID: 35038216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly proton conductive perfluorinated covalent triazine framework via low-temperature synthesis.
    Guan L; Guo Z; Zhou Q; Zhang J; Cheng C; Wang S; Zhu X; Dai S; Jin S
    Nat Commun; 2023 Dec; 14(1):8114. PubMed ID: 38065936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layered S-Bridged Covalent Triazine Frameworks via a Bifunctional Template-Catalytic Strategy Enabling High-Performance Zinc-Ion Hybrid Supercapacitors.
    Liu B; Qian Y; Zhang J; Yang M; Liu Y; Zhang S
    Small; 2024 Feb; ():e2310884. PubMed ID: 38376170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO
    Xu G; Zhu Y; Xie W; Zhang S; Yao C; Xu Y
    Chem Asian J; 2019 Oct; 14(19):3259-3263. PubMed ID: 31441220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent Triazine Frameworks Based on the First
    Wessely ID; Schade AM; Dey S; Bhunia A; Nuhnen A; Janiak C; Bräse S
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34200941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Synthesis of Microporous Bicarbazole-Based Covalent Triazine Frameworks for High-Performance Energy Storage and Carbon Dioxide Uptake.
    Mohamed MG; El-Mahdy AFM; Ahmed MMM; Kuo SW
    Chempluschem; 2019 Nov; 84(11):1767-1774. PubMed ID: 31943884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct synthesis of covalent triazine-based frameworks (CTFs) through aromatic nucleophilic substitution reactions.
    Chen T; Li WQ; Hu WB; Hu WJ; Liu YA; Yang H; Wen K
    RSC Adv; 2019 Jun; 9(31):18008-18012. PubMed ID: 35520569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.