BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34582093)

  • 1. Interrater reliability of spectrogram for detecting wheezing in children.
    Bae W; Kim K; Yoon JS
    Pediatr Int; 2022 Jan; 64(1):e15003. PubMed ID: 34582093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrater reliability of auscultation of breath sounds among physical therapists.
    Brooks D; Thomas J
    Phys Ther; 1995 Dec; 75(12):1082-8. PubMed ID: 7501711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of spectrograms improves the classification of wheezes and crackles in an educational setting.
    Aviles-Solis JC; Storvoll I; Vanbelle S; Melbye H
    Sci Rep; 2020 May; 10(1):8461. PubMed ID: 32440001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability and validity of cervical auscultation: a controlled comparison using videofluoroscopy.
    Leslie P; Drinnan MJ; Finn P; Ford GA; Wilson JA
    Dysphagia; 2004; 19(4):231-40. PubMed ID: 15667057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearing surgical face mask has no significant impact on auscultation assessment.
    Folnožić I; Gomerčić Palčić M; Sabljak M; Vučak E; Vrbanić L; Mandić Perić M; Mrsić F; Šikić A; Ivanovski I
    PeerJ; 2024; 12():e17368. PubMed ID: 38803582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD.
    Jácome C; Marques A
    Respir Care; 2015 Sep; 60(9):1264-75. PubMed ID: 25969514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective evaluation of wheezing in normal infants.
    Murayama Y; Shioya H; Tadaki H; Miyamoto M; Yoshihara S; Tabata H; Furuya H; Uchiyama A; Mochizuki H
    Pediatr Int; 2019 Oct; 61(10):956-961. PubMed ID: 31449704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheezing Sound Separation Based on Informed Inter-Segment Non-Negative Matrix Partial Co-Factorization.
    Cruz JT; Cañadas Quesada FJ; Reyes NR; Candeas PV; Carabias Orti JJ
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheezing recognition algorithm using recordings of respiratory sounds at the mouth in a pediatric population.
    Bokov P; Mahut B; Flaud P; Delclaux C
    Comput Biol Med; 2016 Mar; 70():40-50. PubMed ID: 26802543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histamine challenge in young children using computerized lung sounds analysis.
    Beck R; Dickson U; Montgomery MD; Mitchell I
    Chest; 1992 Sep; 102(3):759-63. PubMed ID: 1516398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity and reliability of acoustic analysis of respiratory sounds in infants.
    Elphick HE; Lancaster GA; Solis A; Majumdar A; Gupta R; Smyth RL
    Arch Dis Child; 2004 Nov; 89(11):1059-63. PubMed ID: 15499065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Wheezing Detection Based on Signal Processing of Spectrogram and Back-Propagation Neural Network.
    Lin BS; Wu HD; Chen SJ
    J Healthc Eng; 2015; 6(4):649-72. PubMed ID: 27011042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-Rater Agreement of Auscultation, Palpable Fremitus, and Ventilator Waveform Sawtooth Patterns Between Clinicians.
    Berry MP; Martí JD; Ntoumenopoulos G
    Respir Care; 2016 Oct; 61(10):1374-83. PubMed ID: 27460103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple computer-based measurement and analysis system of pulmonary auscultation sounds.
    Polat H; Güler I
    J Med Syst; 2004 Dec; 28(6):665-72. PubMed ID: 15615294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usefulness of bowel sound auscultation: a prospective evaluation.
    Felder S; Margel D; Murrell Z; Fleshner P
    J Surg Educ; 2014; 71(5):768-73. PubMed ID: 24776861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning approach to the development and prospective evaluation of a pediatric lung sound classification model.
    Park JS; Kim K; Kim JH; Choi YJ; Kim K; Suh DI
    Sci Rep; 2023 Jan; 13(1):1289. PubMed ID: 36690658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes.
    Kevat A; Kalirajah A; Roseby R
    Respir Res; 2020 Sep; 21(1):253. PubMed ID: 32993620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital auscultation as a novel childhood pneumonia diagnostic tool for community clinics in Sylhet, Bangladesh: protocol for a cross-sectional study.
    Ahmed S; Mitra DK; Nair H; Cunningham S; Khan AM; Islam AA; McLane IM; Chowdhury NH; Begum N; Shahidullah M; Islam MS; Norrie J; Campbell H; Sheikh A; Baqui AH; McCollum ED
    BMJ Open; 2022 Feb; 12(2):e059630. PubMed ID: 35140164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital auscultation in PERCH: Associations with chest radiography and pneumonia mortality in children.
    McCollum ED; Park DE; Watson NL; Fancourt NSS; Focht C; Baggett HC; Brooks WA; Howie SRC; Kotloff KL; Levine OS; Madhi SA; Murdoch DR; Scott JAG; Thea DM; Awori JO; Chipeta J; Chuananon S; DeLuca AN; Driscoll AJ; Ebruke BE; Elhilali M; Emmanouilidou D; Githua LP; Higdon MM; Hossain L; Jahan Y; Karron RA; Kyalo J; Moore DP; Mulindwa JM; Naorat S; Prosperi C; Verwey C; West JE; Knoll MD; O'Brien KL; Feikin DR; Hammitt LL
    Pediatr Pulmonol; 2020 Nov; 55(11):3197-3208. PubMed ID: 32852888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital stethoscopes compared to standard auscultation for detecting abnormal paediatric breath sounds.
    Kevat AC; Kalirajah A; Roseby R
    Eur J Pediatr; 2017 Jul; 176(7):989-992. PubMed ID: 28508991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.