These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34582176)

  • 21. Associative Liquid-In-Liquid 3D Printing Techniques for Freeform Fabrication of Soft Matter.
    Honaryar H; Amirfattahi S; Niroobakhsh Z
    Small; 2023 Apr; 19(16):e2206524. PubMed ID: 36670057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.
    Shin S; Hyun J
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26438-26446. PubMed ID: 28737375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional-printing for microfluidics or the other way around?
    Zhang Y
    Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing?
    Samaro A; Shaqour B; Goudarzi NM; Ghijs M; Cardon L; Boone MN; Verleije B; Beyers K; Vanhoorne V; Cos P; Vervaet C
    Int J Pharm; 2021 Sep; 607():120922. PubMed ID: 34303815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing.
    Torres Arango MA; Zhang Y; Li R; Doerk G; Fluerasu A; Wiegart L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51044-51056. PubMed ID: 33138355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.
    Jin Y; Compaan A; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20057-20066. PubMed ID: 28534614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Ink Writing: A 3D Printing Technology for Diverse Materials.
    Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM
    Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices.
    Chinga-Carrasco G
    Biomacromolecules; 2018 Mar; 19(3):701-711. PubMed ID: 29489338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications.
    Griffin M; Castro N; Bas O; Saifzadeh S; Butler P; Hutmacher DW
    Tissue Eng Part B Rev; 2020 Jun; 26(3):272-283. PubMed ID: 32089089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering of Removing Sacrificial Materials in 3D-Printed Microfluidics.
    Yin P; Hu B; Yi L; Xiao C; Cao X; Zhao L; Shi H
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-Printed Immunosensor Arrays for Cancer Diagnostics.
    Sharafeldin M; Kadimisetty K; Bhalerao KS; Chen T; Rusling JF
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32806676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 4D printing and stimuli-responsive materials in biomedical aspects.
    Lui YS; Sow WT; Tan LP; Wu Y; Lai Y; Li H
    Acta Biomater; 2019 Jul; 92():19-36. PubMed ID: 31071476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Additive-Free and Support-Free 3D Printing of Thermosetting Polymers with Isotropic Mechanical Properties.
    Mahmoudi M; Burlison SR; Moreno S; Minary-Jolandan M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5529-5538. PubMed ID: 33476138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement.
    Sun W; Tashman JW; Shiwarski DJ; Feinberg AW; Webster-Wood VA
    ACS Biomater Sci Eng; 2022 Jan; 8(1):303-313. PubMed ID: 34860495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Materials and technical innovations in 3D printing in biomedical applications.
    Tetsuka H; Shin SR
    J Mater Chem B; 2020 Apr; 8(15):2930-2950. PubMed ID: 32239017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of the residues of granular support bath materials on printed structures in embedded extrusion printing.
    Zeng J; Kasahara N; Xie Z; Louis F; Kang D; Dekishima Y; Kuwagaki S; Sakai N; Matsusaki M
    Biofabrication; 2023 May; 15(3):. PubMed ID: 37072004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printed microfluidics: advances in strategies, integration, and applications.
    Su R; Wang F; McAlpine MC
    Lab Chip; 2023 Mar; 23(5):1279-1299. PubMed ID: 36779387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.