These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34582176)

  • 41. 3D Printing of Ultratough Polyion Complex Hydrogels.
    Zhu F; Cheng L; Yin J; Wu ZL; Qian J; Fu J; Zheng Q
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31304-31310. PubMed ID: 27779379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
    Hinton TJ; Hudson A; Pusch K; Lee A; Feinberg AW
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1781-1786. PubMed ID: 27747289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Custom 3D Printable Silicones with Tunable Stiffness.
    Durban MM; Lenhardt JM; Wu AS; Small W; Bryson TM; Perez-Perez L; Nguyen DT; Gammon S; Smay JE; Duoss EB; Lewicki JP; Wilson TS
    Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29210493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication.
    Jin Y; Chai W; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():313-325. PubMed ID: 28866170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D food printing: main components selection by considering rheological properties.
    Jiang H; Zheng L; Zou Y; Tong Z; Han S; Wang S
    Crit Rev Food Sci Nutr; 2019; 59(14):2335-2347. PubMed ID: 30285472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing.
    Shin S; Hyun J
    Carbohydr Polym; 2021 Jul; 263():117976. PubMed ID: 33858573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of physical and chemical treatments in plant-based gels for food 3D printing.
    Liu Z; Hu X; Lu S; Xu B; Bai C; Ma T; Song Y
    J Food Sci; 2024 Jul; 89(7):3917-3934. PubMed ID: 38829741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-Dimensional Printing of Highly Conductive Carbon Nanotube Microarchitectures with Fluid Ink.
    Kim JH; Lee S; Wajahat M; Jeong H; Chang WS; Jeong HJ; Yang JR; Kim JT; Seol SK
    ACS Nano; 2016 Sep; 10(9):8879-87. PubMed ID: 27564233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elaboration of dimensional quality in 3D-printed food: Key factors in process steps.
    Wen Y; Che QT; Wang S; Park HJ; Kim HW
    Compr Rev Food Sci Food Saf; 2024 Jan; 23(1):e13267. PubMed ID: 38284586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formulation engineering of food systems for 3D-printing applications - A review.
    Wilms P; Daffner K; Kern C; Gras SL; Schutyser MAI; Kohlus R
    Food Res Int; 2021 Oct; 148():110585. PubMed ID: 34507730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chitosan hydrogels in 3D printing for biomedical applications.
    Rajabi M; McConnell M; Cabral J; Ali MA
    Carbohydr Polym; 2021 May; 260():117768. PubMed ID: 33712126
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-Dimensional Printing Using a Maize Protein: Zein-Based Inks in Biomedical Applications.
    Tavares-Negrete JA; Aceves-Colin AE; Rivera-Flores DC; Díaz-Armas GG; Mertgen AS; Trinidad-Calderón PA; Olmos-Cordero JM; Gómez-López EG; Pérez-Carrillo E; Escobedo-Avellaneda ZJ; Tamayol A; Alvarez MM; Trujillo-de Santiago G
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3964-3979. PubMed ID: 34197076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hot extrusion 3D printing technologies based on starchy food: A review.
    Zhang J; Li Y; Cai Y; Ahmad I; Zhang A; Ding Y; Qiu Y; Zhang G; Tang W; Lyu F
    Carbohydr Polym; 2022 Oct; 294():119763. PubMed ID: 35868787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomimetic on-chip filtration enabled by direct micro-3D printing on membrane.
    Li H; Raza A; Yuan S; AlMarzooqi F; Fang NX; Zhang T
    Sci Rep; 2022 May; 12(1):8178. PubMed ID: 35581265
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation of Cancer Cells from Liquid Biopsies Using 3D-Printed Affinity Devices.
    Yang Y; Griffin K; Villareal S; Pappas D
    Methods Mol Biol; 2023; 2679():233-240. PubMed ID: 37300620
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices.
    Wang Y; Cui H; Esworthy T; Mei D; Wang Y; Zhang LG
    Adv Mater; 2022 May; 34(20):e2109198. PubMed ID: 34951494
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Materials Characterization of Stereolithography 3D Printed Polymer to Develop a Self-Driven Microfluidic Device for Bioanalytical Applications.
    Stark BL; Gamboa M; Esparza A; Cavendar-Word TJ; Bermudez D; Carlon L; Roberson DA; Joddar B; Natividad-Diaz S
    ACS Appl Bio Mater; 2024 May; ():. PubMed ID: 38776250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.