These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 34582184)
21. Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production. Zhang Y; Hu Y; Zeng H; Zhong L; Liu K; Cao H; Li W; Yan H J Hazard Mater; 2017 May; 329():22-29. PubMed ID: 28122274 [TBL] [Abstract][Full Text] [Related]
22. Photocatalytic Hydrogen Evolution Coupled with Production of Highly Value-Added Organic Chemicals by a Composite Photocatalyst CdIn Zhang HH; Zhan GP; Liu ZK; Wu CD Chem Asian J; 2021 Jun; 16(11):1499-1506. PubMed ID: 33871155 [TBL] [Abstract][Full Text] [Related]
23. Photocatalytic hydrogen production of the CdS/TiO2-WO3 ternary hybrid under visible light irradiation. Chen YL; Lo SL; Chang HL; Yeh HM; Sun L; Oiu C Water Sci Technol; 2016; 73(7):1667-72. PubMed ID: 27054739 [TBL] [Abstract][Full Text] [Related]
24. Effective electron-hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution. Zhang Y; Jin Z Phys Chem Chem Phys; 2019 Apr; 21(16):8326-8341. PubMed ID: 30964138 [TBL] [Abstract][Full Text] [Related]
25. Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation. González-Moya JR; Garcia-Basabe Y; Rocco ML; Pereira MB; Princival JL; Almeida LC; Araújo CM; David DG; da Silva AF; Machado G Nanotechnology; 2016 Jul; 27(28):285401. PubMed ID: 27251109 [TBL] [Abstract][Full Text] [Related]
26. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related]
27. In Situ Fabrication of CdS/Cd(OH) Chen R; Qian L; Xu S; Wan S; Ma M; Zhang L; Jiang R Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686961 [TBL] [Abstract][Full Text] [Related]
28. Designing CdS Mesoporous Networks on Co-C@Co Reddy DA; Park H; Gopannagari M; Kim EH; Lee S; Kumar DP; Kim TK ChemSusChem; 2018 Jan; 11(1):245-253. PubMed ID: 28972688 [TBL] [Abstract][Full Text] [Related]
29. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Qi L; Yu J; Jaroniec M Phys Chem Chem Phys; 2011 May; 13(19):8915-23. PubMed ID: 21678582 [TBL] [Abstract][Full Text] [Related]
30. Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles. Rico-Oller B; Boudjemaa A; Bahruji H; Kebir M; Prashar S; Bachari K; Fajardo M; Gómez-Ruiz S Sci Total Environ; 2016 Sep; 563-564():921-32. PubMed ID: 26524993 [TBL] [Abstract][Full Text] [Related]
31. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Yan Z; Sun Z; Liu X; Jia H; Du P Nanoscale; 2016 Feb; 8(8):4748-56. PubMed ID: 26862011 [TBL] [Abstract][Full Text] [Related]
32. Efficient and Stable Photocatalytic Hydrogen Evolution Activity of Multi-Heterojunction Composite Photocatalysts: CdS and NiS Xu J; Zhu J; Niu J; Chen M; Yue J Front Chem; 2019; 7():880. PubMed ID: 32039136 [TBL] [Abstract][Full Text] [Related]
33. Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light. Wang D; Zeng H; Xiong X; Wu MF; Xia M; Xie M; Zou JP; Luo SL Sci Bull (Beijing); 2020 Jan; 65(2):113-122. PubMed ID: 36659074 [TBL] [Abstract][Full Text] [Related]
34. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Yang J; Yan H; Zong X; Wen F; Liu M; Li C Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110430. PubMed ID: 23816907 [TBL] [Abstract][Full Text] [Related]
35. CdS Reinforced with CoS Quan Y; Wang G; Li D; Jin Z Chemistry; 2021 Nov; 27(66):16448-16460. PubMed ID: 34519374 [TBL] [Abstract][Full Text] [Related]
36. Amorphous tungsten phosphosulphide-modified CdS nanorods as a highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production. Jian Q; Hao X; Jin Z; Ma Q Phys Chem Chem Phys; 2020 Jan; 22(4):1932-1943. PubMed ID: 31912807 [TBL] [Abstract][Full Text] [Related]
37. Hierarchical Layered WS2 /Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution. Xiang Q; Cheng F; Lang D ChemSusChem; 2016 May; 9(9):996-1002. PubMed ID: 27059296 [TBL] [Abstract][Full Text] [Related]
38. Direct Photoreforming of Real-World Polylactic Acid Plastics into Highly Selective Value-Added Pyruvic Acid under Visible Light. Miao Y; Zhao Y; Gao J; Wang J; Zhang T J Am Chem Soc; 2024 Feb; 146(7):4842-4850. PubMed ID: 38295276 [TBL] [Abstract][Full Text] [Related]
39. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings. Chen B; Wu LZ; Tung CH Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898 [TBL] [Abstract][Full Text] [Related]
40. Comparative Study of the Photocatalytic Hydrogen Evolution over Cd Potapenko KO; Kurenkova AY; Bukhtiyarov AV; Gerasimov EY; Cherepanova SV; Kozlova EA Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535500 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]