These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 34582261)
1. The Complex Epidemiological Relationship between Flooding Events and Human Outbreaks of Mosquito-Borne Diseases: A Scoping Review. Coalson JE; Anderson EJ; Santos EM; Madera Garcia V; Romine JK; Dominguez B; Richard DM; Little AC; Hayden MH; Ernst KC Environ Health Perspect; 2021 Sep; 129(9):96002. PubMed ID: 34582261 [TBL] [Abstract][Full Text] [Related]
2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
3. Flooding and Arboviral Disease: Predicting Ross River Virus Disease Outbreaks Across Inland Regions of South-Eastern Australia. Tall JA; Gatton ML J Med Entomol; 2020 Jan; 57(1):241-251. PubMed ID: 31310648 [TBL] [Abstract][Full Text] [Related]
4. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Bezirtzoglou C; Dekas K; Charvalos E Anaerobe; 2011 Dec; 17(6):337-40. PubMed ID: 21664978 [TBL] [Abstract][Full Text] [Related]
5. The effects of climate change-induced flooding on harvest failure in Burkina Faso: case study. Müller C; Ouédraogo WA; Schwarz M; Barteit S; Sauerborn R Front Public Health; 2023; 11():1166913. PubMed ID: 37614457 [TBL] [Abstract][Full Text] [Related]
6. Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. Anyamba A; Small JL; Britch SC; Tucker CJ; Pak EW; Reynolds CA; Crutchfield J; Linthicum KJ PLoS One; 2014; 9(3):e92538. PubMed ID: 24658301 [TBL] [Abstract][Full Text] [Related]
7. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Fouque F; Reeder JC Infect Dis Poverty; 2019 Jun; 8(1):51. PubMed ID: 31196187 [TBL] [Abstract][Full Text] [Related]
8. A mixed method to evaluate burden of malaria due to flooding and waterlogging in Mengcheng County, China: a case study. Ding G; Gao L; Li X; Zhou M; Liu Q; Ren H; Jiang B PLoS One; 2014; 9(5):e97520. PubMed ID: 24830808 [TBL] [Abstract][Full Text] [Related]
9. The impact of climate change on mosquito-borne diseases in Africa. Giesen C; Roche J; Redondo-Bravo L; Ruiz-Huerta C; Gomez-Barroso D; Benito A; Herrador Z Pathog Glob Health; 2020 Sep; 114(6):287-301. PubMed ID: 32584659 [TBL] [Abstract][Full Text] [Related]
10. Hydrometeorology and flood pulse dynamics drive diarrheal disease outbreaks and increase vulnerability to climate change in surface-water-dependent populations: A retrospective analysis. Alexander KA; Heaney AK; Shaman J PLoS Med; 2018 Nov; 15(11):e1002688. PubMed ID: 30408029 [TBL] [Abstract][Full Text] [Related]
11. Vectors vs. humans in Australia--who is on top down under? An update on vector-borne disease and research on vectors in Australia. Russell RC J Vector Ecol; 1998 Jun; 23(1):1-46. PubMed ID: 9673928 [TBL] [Abstract][Full Text] [Related]
12. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. Nosrat C; Altamirano J; Anyamba A; Caldwell JM; Damoah R; Mutuku F; Ndenga B; LaBeaud AD PLoS Negl Trop Dis; 2021 Mar; 15(3):e0009182. PubMed ID: 33735293 [TBL] [Abstract][Full Text] [Related]
13. Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework. Chowell G; Mizumoto K; Banda JM; Poccia S; Perrings C Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180272. PubMed ID: 31056044 [TBL] [Abstract][Full Text] [Related]
14. Weather-based forecasting of mosquito-borne disease outbreaks in Canada. Ogden NH; Lindsay LR; Ludwig A; Morse AP; Zheng H; Zhu H Can Commun Dis Rep; 2019 May; 45(5):127-132. PubMed ID: 31285703 [TBL] [Abstract][Full Text] [Related]
15. Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Lau CL; Smythe LD; Craig SB; Weinstein P Trans R Soc Trop Med Hyg; 2010 Oct; 104(10):631-8. PubMed ID: 20813388 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the spatial distribution of scientific publications regarding vector-borne diseases related to climate variability in South America. López MS; Müller GV; Sione WF Spat Spatiotemporal Epidemiol; 2018 Aug; 26():35-93. PubMed ID: 30390933 [TBL] [Abstract][Full Text] [Related]
17. Spatio-temporal distribution of vector borne diseases in Australia and Papua New Guinea vis-à-vis climatic factors. Kuleshov Y; Wei Y; Inape K; Liu GJ J Vector Borne Dis; 2022; 59(2):115-126. PubMed ID: 36124477 [TBL] [Abstract][Full Text] [Related]
18. Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews. Kulkarni MA; Duguay C; Ost K Global Health; 2022 Jan; 18(1):1. PubMed ID: 34980187 [TBL] [Abstract][Full Text] [Related]
19. Ross River Virus Disease Activity Associated With Naturally Occurring Nontidal Flood Events in Australia: A Systematic Review. Tall JA; Gatton ML; Tong S J Med Entomol; 2014 Nov; 51(6):1097-108. PubMed ID: 26309294 [TBL] [Abstract][Full Text] [Related]
20. Extreme water-related weather events and waterborne disease. Cann KF; Thomas DR; Salmon RL; Wyn-Jones AP; Kay D Epidemiol Infect; 2013 Apr; 141(4):671-86. PubMed ID: 22877498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]