These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34582350)

  • 1. Learning from Deep Stereoscopic Attention for Simulator Sickness Prediction.
    Du M; Cui H; Wang Y; Duh HB
    IEEE Trans Vis Comput Graph; 2023 Feb; 29(2):1415-1423. PubMed ID: 34582350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos.
    Padmanaban N; Ruban T; Sitzmann V; Norcia AM; Wetzstein G
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1594-1603. PubMed ID: 29553929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion Sickness Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks.
    Lee TM; Yoon JC; Lee IK
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1919-1927. PubMed ID: 30794181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sick Moves! Motion Parameters as Indicators of Simulator Sickness.
    Feigl T; Roth D; Gradl S; Wirth M; Latoschik ME; Eskofier BM; Philippsen M; Mutschler C
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3146-3157. PubMed ID: 31425036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG classification model for virtual reality motion sickness based on multi-scale CNN feature correlation.
    Hua C; Tao J; Zhou Z; Chai L; Yan Y; Liu J; Fu R
    Comput Methods Programs Biomed; 2024 Jun; 251():108218. PubMed ID: 38728828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of three-dimensional motion sickness using a virtual reality simulator for robot-assisted surgery in undergraduate medical students: A prospective observational study.
    Takata R; Kanehira M; Kato Y; Matsuura T; Kato R; Maekawa S; Obara W
    BMC Med Educ; 2021 Sep; 21(1):498. PubMed ID: 34548032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VR.net: A Real-world Dataset for Virtual Reality Motion Sickness Research.
    Wen E; Gupta C; Sasikumar P; Billinghurst M; Wilmott J; Skow E; Dey A; Nanayakkara S
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2330-2336. PubMed ID: 38437109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Motion Sickness Predictor Induced by Visual Stimuli in Virtual Reality.
    Kim J; Oh H; Kim W; Choi S; Son W; Lee S
    IEEE Trans Neural Netw Learn Syst; 2022 Feb; 33(2):554-566. PubMed ID: 33079678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual reality environment design of managing both presence and virtual reality sickness.
    Tanaka N; Takagi H
    J Physiol Anthropol Appl Human Sci; 2004 Nov; 23(6):313-7. PubMed ID: 15599082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restricting the distribution of visual attention reduces cybersickness.
    Yip SH; Saunders JA
    Cogn Res Princ Implic; 2023 Mar; 8(1):18. PubMed ID: 36929248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual Attention Prediction for Stereoscopic Video by Multi-Module Fully Convolutional Network.
    Fang Y; Zhang C; Huang H; Lei J
    IEEE Trans Image Process; 2019 Nov; 28(11):5253-5265. PubMed ID: 31107651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the Arousal and Valence Values of Emotional States Using Learned, Predesigned, and Deep Visual Features.
    Joudeh IO; Cretu AM; Bouchard S
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep3DSaliency: Deep Stereoscopic Video Saliency Detection Model by 3D Convolutional Networks.
    Fang Y; Ding G; Li J; Fang Z
    IEEE Trans Image Process; 2018 Dec; ():. PubMed ID: 30530363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigating Cybersickness in Virtual Reality Systems through Foveated Depth-of-Field Blur.
    Hussain R; Chessa M; Solari F
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of screen configuration on the neck angle, muscle activity, and simulator sickness symptoms in virtual reality.
    Pokhrel S; Hwang J
    Work; 2024; 79(1):167-175. PubMed ID: 38217564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Subjective sensations indicating simulator sickness and fatigue after exposure to virtual reality].
    Malińska M; Zuzewicz K; Bugajska J; Grabowski A
    Med Pr; 2014; 65(3):361-71. PubMed ID: 25230565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.